Access Across America: Biking 2019

Final Report

Prepared by:

Andrew Owen Brendan Murphy Accessibility Observatory Center for Transportation Studies University of Minnesota

CTS 20-15

ACCESSIBILITY OBSERVATORY

University of Minnesota

Technical Report Documentation Page

1. Report No.	2.	3. Recipients Accession No.			
CTS 20-15		*			
1 Title and Subtitle		5. Domont Data			
4. The and Subline		5. Report Date			
Access Across America: Biking 20	019	November 2020			
		0.			
7. Author(s)		8. Performing Organization I	Report No.		
Andrew Owen and Brendan Murp	hy				
9. Performing Organization Name and Address	ž	10. Project/Task/Work Unit	No.		
Accessibility Observatory		CTS 2016016			
University of Minnesota		11. Contract (C) or Grant (G) No.		
Minneapolis, MN 55455					
United States					
12. Sponsoring Organization Name and Addres	38	13. Type of Report and Perio	d Covered		
Center for Transportation Studies		Final Report			
University of Minnesota		14. Sponsoring Agency Code			
University Office Plaza, Suite 440					
2221 University Avenue SE					
Minneapolis MN 55414					
15. Supplementary Notes					
http://ao.umn.edu/publications/					
http://www.cts.umn.edu//publicati	ons/researchreports/				
16. Abstract (Limit: 250 words)					
Accessibility is the ease and feasily	oility of reaching valued destina	tions. It can be measur	ed for a wide array of		
transportation modes, to different	types of destinations, and at diff	ferent times of day. The	ere are a variety of ways to		
define accessibility, but the number	er of destinations reachable with	in a given travel time	s the most comprehensible		
and transparent as well as the mos	t directly comparable across citi	ies.	1		
1	y 1				
This report focuses on accessibilit	y to jobs by biking. Bicycle mo	de share for commute t	rips in the U.S. is typically		
very low and has remained stable	at 0.6% of all commute trips sin	ce 2011: however, ove	rall number of bicycle		
commuters nationwide has increas	red by 21.6% since 2010		run number of oregete		
commuters nation while has mereds	ed by 21.070 since 2010.				
This study estimates the accessibil	ity to jobs by hiling for each of	the United States' 11	million conque blocks and		
analyzes these date in the 50 large	at (by nonvertion) matronalitan	anaga Traval timog hy	hilling and coloulated using		
analyzes these data in the 50 large	st (by population) metropolitan	areas. Travel times by	biking are calculated using		
detailed roadway networks classif	ied by their Level of Traffic Str	ess(L1S). As of the 20	To version of LEHD		
LODES data, statistics for federal	jobs and workers are no longer	included in the dataset	s. Accessibility data		
included in this report may be less	accurate in metropolitan areas	with large proportions	of federal jobs, such as		
Washington, D.C.					
This report presents detailed acces	sibility values for each metropo	olitan area, as well as b	lock-level		
maps which illustrate the spatial p	atterns of accessibility within ea	ach area. A separate pu	blication, Access		
Across America: Biking 2019 Met	hodology, describes the data an	d methodology used in	this evaluation.		
17 Decomment Andrews/Decom		10 Avail-1-114-0			
17. Document Analysis/Descriptors	a work trips land use travel	No restrictions Door	ment available from		
time trough behavior unber trough	g, work urps, rand use, travel	Notional Tashriaal I	nicilitavanable nomi		
unne, travel benavior, urban transp	ortation	National Technical Information Services,			
10. Security Clean (this way of)	20 Security Class (this reserve)	Alexandria, Virginia	22.512		
19. Security Class (inis report)	Linclassified	21. No. of Pages 231	22. Price		
Unclassified	Unclassified	231			
		1			

Access Across America: Biking 2019

Final Report

Prepared by:

Andrew Owen Brendan Murphy Accessibility Observatory Center for Transportation Studies University of Minnesota

November 2020

Published by:

Center for Transportation Studies University of Minnesota University Office Plaza, Suite 440 2221 University Avenue SE Minneapolis, MN 55414

This report represents the results of research conducted by the authors and does not necessarily reflect the official views or policy of the Center for Transportation Studies or the University of Minnesota.

Authors

Andrew Owen Director, Accessibility Observatory University of Minnesota

Brendan Murphy

Lead Researcher, Accessibility Observatory University of Minnesota

Acknowledgements

The development of this report was made possible by sponsorship from:

- Arkansas State Highway and Transportation Department
- California Department of Transportation
- District Department of Transportation
- Federal Highway Administration
- Florida Department of Transportation
- Illinois Department of Transportation
- Iowa Department of Transportation
- Maryland Department of Transportation
- Massachusetts Department of Transportation
- Minnesota Department of Transportation
- North Carolina Department of Transportation
- Tennessee Department of Transportation
- Virginia Department of Transportation
- Washington State Department of Transportation

Executive Summary

Accessibility is the ease and feasibility of reaching valuable destinations. Accessibility can be measured for a wide array of transportation modes, to different types of destinations, and at different times of day. There are a variety of ways to define accessibility, but the number of destinations reachable within a given travel time is the most comprehensible and transparent—as well as the most directly comparable between cities, and other geographic areas. This report focuses on accessibility to jobs by biking. Jobs are the most significant non-home destination, and job accessibility is an important consideration in the attractiveness and usefulness of a place or area. Bicycle mode share for commute trips in the U.S. is typically very low, and has remained stable at 0.6% of all commute trips since 2011; however, overall number of bicycle commuters nationwide has increased by 21.6% since 2010.

This study estimates the accessibility to jobs by biking for each of the United States' 11 million census blocks, and analyzes these data in the 50 largest (by population) metropolitan areas. Travel times by biking are calculated using detailed roadway networks classified by their Level of Traffic Stress (LTS). As of the 2016 version of LEHD LODES data, statistics for federal jobs and workers are no longer included in the datasets. Accessibility data included in this report may be less accurate in metropolitan areas with large proportions of federal jobs, such as Washington, D.C.

Rankings are determined by a weighted average of job accessibility; a higher weight is given to closer jobs, as jobs closer to origins are more easily reached, and are thus more valuable, than those further away. Jobs reachable within ten minutes are weighted most heavily, and jobs are given decreasing weights as travel time increases up to 60 minutes. Based on this measure, the ten metro areas with the greatest accessibility to jobs by biking, for low-stress networks (LTS 2) and medium-stress networks (LTS 3) are:

	Low-Stress		Medium-Stress
1.	New York	1.	New York
2.	San Francisco	2.	San Francisco
3.	Portland	3.	Chicago
4.	Boston	4.	Los Angeles
5.	Los Angeles	5.	Denver
6.	Denver	6.	Boston
7.	Chicago	7.	Seattle
8.	Seattle	8.	Portland
9.	Philadelphia	9.	San Jose
10.	Minneapolis–Saint Paul	10.	Minneapolis–Saint Paul

The ten metro areas with the greatest 1-year gain in accessibility to jobs by biking, for low-stress and medium-stress networks are:

	Low-Stress		Medium-Stress
1.	Raleigh	1.	Charlotte
2.	Boston	2.	Raleigh
3.	Portland	3.	Los Angeles
4.	Nashville	4.	Nashville
5.	Dallas	5.	Milwaukee
6.	Seattle	6.	Hartford
7.	Denver	7.	Richmond
8.	San Francisco	8.	Dallas
9.	Los Angeles	9.	Las Vegas
10.	San Jose	10.	Kansas City

This report presents detailed accessibility values for each metropolitan area, as well as block-level maps which illustrate the spatial patterns of accessibility within each area. A separate publication, *Access Across America: Biking 2019 Methodology*, describes the data and methodology used in this evaluation.

Contents

1	Introduction	1						
2	Accessibility to Jobs by Biking2.1Metropolitan Area Rankings2.2Bicycle Network Characteristics							
3	Discussion3.1 Traffic Stress3.2 Land Use Effects3.3 Comparisons to 2018 Data3.4 Conclusions	17 . 17 . 18 . 19 . 20						
4	Metropolitan Area Data and Maps	22						

1 Introduction

Accessibility is the ease and feasibility of reaching valuable destinations. Accessibility can be measured for a wide array of transportation modes, to different types of destinations, and at different times of day. There are a variety of ways to define accessibility, but the number of destinations reachable within a given travel time is the most comprehensible and transparent—as well as the most directly comparable between cities, and other geographic areas. This report focuses on accessibility to jobs by biking. Jobs are the most significant non-home destination, and job accessibility is an important consideration in the attractiveness and usefulness of a place or area. Bicycle mode share for commute trips in the U.S. is typically very low, and has remained stable at 0.6% of all commute trips since 2011; however, overall number of bicycle commuters nationwide has increased by 21.6% since 2010¹.

Accessibility is not a new idea². Historically, however, implementations of accessibility evaluation have typically focused on individual cities or metropolitan areas, as well as only on motorized modes. Recent work has demonstrated the feasibility and value of systematically evaluating accessibility across multiple metropolitan areas by auto³, transit⁴, and bike⁵. Work by Iacono et al. and Krizek et al., focusing on non-motorized accessibility analysis in the Minneapolis–St. Paul metropolitan area, discusses details and methodology in evaluating the use of accessibility metrics for the non-motorized commuting modes of biking and walking⁶.

Level of Traffic Stress (LTS) has been demonstrated to be an effective way to identify streets which are attractive or unattractive to bicyclists, and many methods of classifying roadways as suitable for bicycling have been proposed since the late 1980s⁷. One such early metric, Bicycle Stress Level (BSL), ranks streets based on motor vehicle traffic volume, prevailing speed, and curb lane width. Accordingly, resident populations can be segmented based on their cycling comfort levels for different types of roadways, drawing on age and cycling experience⁸.

LTS analysis relies on a variety of roadway characteristics, including the presence of bike lanes or paths, street lane configuration, and prevailing speeds; a value of 1 (lowest stress) to 4 (highest stress) is assigned to street segments based on these characteristics. The four types of cyclists⁹ loosely align with these categories:

- 1. No way, no how—not interested in cycling; alternatively, suitable for most children.
- 2. Interested but concerned—unwilling to bike next to fast traffic or in traffic on busy roads; strong preference for separated facilities.

¹U.S. Census Bureau (2017)

²See Hansen (1959) for its origins, and Geurs and Van Eck (2001) and Handy and Niemeier (1997) for reviews.

³Levinson (2013), Levine et al. (2012)

⁴Ramsey and Bell (2014), Tomer et al. (2011)

⁵People for Bikes (2017)

⁶Iacono et al. (2010), Krizek et al. (2009)

⁷See Figliozzi and Blanc (2015) for a summary of proposed metrics, Mekuria et al. (2012); Furth et al. (2016) for outlines of LTS methodology, and Cesme et al. (2017) for empirical support of LTS.

⁸Sorton and Walsh (1994)

⁹Geller (2011), Dill and McNeil (2016), Furth (2007)

- 3. Enthused and confident—willing to tolerate busy traffic conditions if there is designated space for bicycles.
- 4. Strong and fearless—willing to bike regardless of traffic conditions.

Upwards of 80% of the population of cyclists and potential cyclists may fall into category two, which suggests bicycle facilities falling under the LTS 2 classification as a reasonable target for new construction¹⁰.

Combining accessibility analysis and LTS evaluation has precedent both within individual cities¹¹ and across multiple areas¹². However, data availability consistently remains an issue, and hyper-local accessibility analyses tend to rely on data sources which are inconsistent at best, and nonexistent at worst, in cities and areas outside the immediate focus¹³; a national-scope analysis with nationally-available data circumvents this issue.

This study estimates the accessibility to jobs by biking for each of the United States' 11 million census blocks, and analyzes these data in the 50 largest (by population) metropolitan areas. Table 1 lists the included metropolitan areas, ordered by the total employment within each.

Travel times by biking are calculated using detailed road networks for the entire country, with individual street links and intersections classified by LTS score. Biking travel are assumed to remain constant throughout the day, in contrast to the varying travel times produced by transit schedules when calculating transit travel times, and biking travel speeds were held constant throughout all analysis areas.

Section 2 presents the accessibility values for the included metropolitan areas and ranks metropolitan areas by accessibility. Section 3 discusses these results and their implications, and Section 4 provides data and maps describing patterns of accessibility in individual metropolitan areas. A separate document, *Access Across America: Biking 2019 Methodology*, describes the data and methodology used in the evaluation¹⁴.

¹⁰Geller (2009); Dill and McNeil (2016); Furth et al. (2016)

¹¹See Lowry et al. (2016) and Kent and Karner (2018) for local applications in Seattle and Baltimore, respectively ¹²People for Bikes (2017)

¹³Handy and Clifton (2001)

¹⁴See Murphy and Owen (2019) for additional methodology discussion and literature review

Rank	Area	Total Employment
1	New York	8,946,175
2	Los Angeles	5,825,012
3	Chicago	4,448,938
4	Dallas	3,366,285
5	Houston	2,894,863
6	Philadelphia	2,862,819
7	Washington	2,683,930
8	Atlanta	2,534,711
9	Miami	2,503,411
10	Boston	2,464,508
11	San Francisco	2,241,034
12	Phoenix	1,958,550
13	Detroit	1,915,549
14	Minneapolis	1,847,804
15	Seattle	1,798,352
16	Riverside	1,749,931
17	San Diego	1,419,381
18	Denver	1,395,732
19	St. Louis	1,344,165
20	Tampa	1,293,226
21	Baltimore	1,277,911
22	Portland	1,140,463
23	Orlando	1,135,710
24	Pittsburgh	1,105,247
25	Cincinnati	1,045,101
26	Kansas City	1,036,878
27	San Antonio	1,019,742
28	Austin	967,584
29	Sacramento	964,523
30	Cleveland	961,969
31	San Jose	947,987
32	Columbus	946,698
33	Las Vegas	941,812
34	Charlotte	930,190
35	Indianapolis	919,830
30	Milwaukaa	043,420 770.945
37	Providence	775,605
20	Virginia Roach	715 627
J7 40	Jacksonvillo	662 664
40		645 505
42	Richmond	640 682
42	Raleigh	615 937
44	Salt Lake City	605 393
45	Hartford	595 341
46	Memphis	589 984
47	Oklahoma City	565 695
48	Buffalo	525 947
49	New Orleans	505 876
50	Birmingham	479.837
	gnam	17,007

Table 1: Metropolitan Areas Ranked by Total Employment

Employment totals are based on LEHD estimates and may not match other sources.

2 Accessibility to Jobs by Biking

Table 2 gives the low-stress accessibility values for each metropolitan area, in alphabetical order, based on OpenStreetMap road networks, and Table 3 gives the medium-stress accessibility values. The columns in each table represent the number of jobs that a typical worker residing in the city can reach within 10, 20, 30, 40, 50 and 60 minutes of travel, by biking. Table 4 shows the 1-year change in low-stress weighted accessibility values for each metropolitan area, and Table 5 shows the 1-year change in medium-stress weighted accessibility values.

Area	10 min	20 min	30 min	40 min	50 min	60 min
Atlanta	1,318	3,003	4,336	5,078	5,480	5,714
Austin	2,376	6,176	9,668	11,550	12,371	12,653
Baltimore	2,956	8,581	14,946	21,276	27,011	32,258
Birmingham	750	1,552	1,793	1,881	1,938	1,951
Boston	5,543	15,959	28,580	40,908	51,510	59,868
Buffalo	1,738	4,248	5,893	6,678	7,065	7,164
Charlotte	1,302	2,781	3,311	3,505	3,553	3,567
Chicago	5,100	12,647	19,412	25,831	31,648	37,229
Cincinnati	1,617	4,438	6,581	7,933	8,426	8,614
Cleveland	1,667	4,112	5,271	5,792	6,013	6,064
Columbus	2,098	5,818	9,235	11,467	13,392	14,704
Dallas	1,532	3,086	4,443	5,482	6,224	6,570
Denver	3,768	12,442	22,135	32,500	43,995	55,415
Detroit	1,799	6,150	11,414	16,942	22,575	28,283
Hartford	1,083	1,706	1,894	1,973	2,021	2,050
Houston	1,344	2,188	2,555	2,757	2,869	2,905
Indianapolis	1,667	4,013	5,550	6,644	7,404	7,931
Jacksonville	971	1,790	2,055	2,180	2,246	2,292
Kansas City	1,830	4,845	7,268	9,489	11,757	14,128
Las Vegas	1,613	2,714	2,896	2,953	2,989	3,025
Los Angeles	5,471	13,748	21,520	28,578	34,360	39,256
Louisville	1,648	5,076	8,810	12,299	15,485	18,057
Memphis	783	1,148	1,203	1,235	1,253	1,259
Miami	2,540	4,774	5,634	6,472	7,179	7,590
Milwaukee	2,143	4,376	5,575	6,468	6,825	6,974
Minneapolis	2,924	9,897	19,920	30,942	42,025	51,804
Nashville	1,146	2,500	3,187	3,533	3,652	3,690
New Orleans	2,318	4,775	5,865	6,572	7,159	7,268
New fork	29,032	105,230	187,688	263,990	333,142	388,754
Oklanda	1,000	4,903	0,007	2 4 5 0	10,200	2 7 9 5
Philadalphia	1,140	2,007	2,430	2,037	2,730	2,700
Phoonix	4,737	6 6 2 1	10.294	12 606	17,217	21 190
Pittsburgh	1 8 2 5	4 4 8 5	6 901	8 3 4 5	9 0 7 5	21,107
Portland	5 291	17 858	3/1 3/15	52 153	66 646	78/139
Providence	1 627	2 894	3 329	3 464	3 502	3 527
Raleigh	1 495	4 277	7 281	10.370	12 588	14 187
Richmond	1 843	4 621	5 780	6 456	7 297	7 761
Riverside	981	1 610	1 794	1 864	1 880	1 894
Sacramento	1.984	4.001	4,948	5.625	6.095	6.357
Salt Lake City	2.781	8.007	14.394	21.637	27.779	31.327
San Antonio	1,355	3,085	3,948	4,852	5,450	5,602
San Diego	2,350	4,393	5,303	5,843	6,253	6,505
San Francisco	10,867	37,434	66,525	93,514	118,256	136,647
San Jose	4,059	10,651	16,565	21,917	25,912	28,373
Seattle	5,318	13,032	18,963	23,619	26,847	28,581
St. Louis	1,427	2,912	3,604	4,037	4,347	4,547
Tampa	1,320	2,240	2,554	2,711	2,798	2,824
Virginia Beach	1,138	1,847	1,996	2,045	2,076	2,094
Washington	4,354	11.226	17.766	23,707	28,482	32,310

Table 2: Cumulative Number of Jobs Reachable by Number of Minutes, Low Stress, 2019

Area	10 min	20 min	30 min	40 min	50 min	60 min
Atlanta	2.045	8.482	17.682	27.891	39.301	51.379
Austin	3.967	17.606	36.976	58,847	81.026	103.245
Baltimore	4.218	17.249	32.249	47.729	66.375	85.649
Birmingham	1,279	4,489	7,785	10,934	13,745	16,128
Boston	8,685	31,743	66,217	107,894	146,137	176,547
Buffalo	3,485	15,478	33,518	59,640	87,480	115,239
Charlotte	2,069	8,342	18,599	30,128	42,914	58,067
Chicago	10,348	42,367	88,865	147,678	217,708	293,104
Cincinnati	2,698	12,122	26,445	45,646	69,904	98,320
Cleveland	2,658	11,606	24,581	42,163	61,756	81,860
Columbus	3,983	19,158	41,992	73,154	113,447	161,444
Dallas	2,852	11,052	22,133	34,492	47,413	60,529
Denver	6,736	29,864	67,400	120,385	185,887	267,108
Detroit	2,408	11,624	27,400	49,127	77,122	110,968
Hartford	2,515	9,841	16,807	22,077	26,632	30,422
Houston	2,789	9,809	17,866	25,649	33,058	40,438
Indianapolis	2,513	9,354	18,482	28,653	39,730	52,124
Jacksonville	1,789	6,937	13,827	20,455	25,984	30,968
Kansas City	2,555	9,858	20,822	34,484	49,467	65,240
Las Vegas	3,385	17,335	40,695	71,140	107,271	148,140
Los Angeles	9,380	38,661	82,343	135,299	192,965	254,009
Louisville	2,265	9,515	19,870	29,773	39,925	49,488
Memphis	1,422	4,193	6,711	8,525	9,609	9,931
Miami	4,715	18,752	39,007	63,106	90,655	120,477
Milwaukee	4,093	15,296	29,318	46,534	65,112	84,722
Minneapolis	5,660	25,972	57,848	100,454	152,357	210,039
Nashville	1,731	6,486	12,109	17,946	22,956	26,838
New Orleans	4,451	16,903	30,489	40,754	48,553	56,869
New York	39,034	144,275	279,018	437,523	622,844	819,997
Oklahoma City	1,964	7,139	13,519	20,529	26,956	33,505
Orlando	2,322	9,314	19,014	30,547	43,269	56,501
Philadelphia	8,015	30,720	55,995	83,005	113,180	144,184
Phoenix	3,428	16,088	35,750	62,051	95,468	135,197
Pittsburgh	2,830	11,740	24,030	38,183	53,832	69,234
Portland	7,042	29,753	64,206	104,315	146,646	189,292
Providence	2,776	8,430	13,858	18,902	22,835	25,220
Raleign	1,943	10.057	16,196	27,459	41,221	56,948
Richmond	2,951	10,957	18,727	20,284	33,498	39,817
Riverside	1,930	0,003	11,744	10,4/1	20,220	23,220
Sacramento	3,303	21 212	22,177	71 210	47,203	121 922
San Antonio	4,713	21,312	15 119	22 575	21 202	101,002
San Antonio	4 209	13 864	25.840	23,373	52 561	40,410
San Francisco	+,207 22 251	77.640	133 547	186 80/	227.010	2/8 9/1
San Jose	6 704	20 042	61 205	100,074	151 2/0	240,041
Seattle	10 513	33 905	60 671	95 075	134 073	172 8/17
St. Louis	2 437	9 262	19 078	28 836	37 590	45 046
Tampa	2 801	13 219	29.328	49 062	69 475	89 235
Virginia Beach	1 932	5 328	7 555	8 7 3 8	9 580	10 057
Washington	7.572	29 448	57.526	88 105	121 135	159 515
	.,	,	1,020	227.00	,	

Table 3: Cumulative Number of Jobs Reachable by Number of Minutes, Medium Stress, 2019

Rank	Area	1-Year Change
1	Raleigh	+111.03%
2	Boston	+65.77%
3	Portland	+37.08%
4	Nashville	+36.33%
5	Dallas	+34.73%
6	Seattle	+30.04%
7	Denver	+17.63%
8	San Francisco	+16.63%
9	Los Angeles	+13.91%
10	San Jose	+13.55%
11	Austin	+13.50%
12	Charlotte	+13.16%
13	Kansas City	+11.82%
14	San Diego	+11.20%
15	Salt Lake City	+10.68%
16	New York	+10.35%
17	Cincinnati	+9.05%
18	Minneapolis	+8.45%
19	Providence	+8.33%
20	Phoenix	+8.27%
21	Memphis	+7.92%
22	Miami	+7.48%
23	Columbus	+7.27%
24	Pittsburgh	+7.02%
25	Orlando	+6.56%
26	Atlanta	+6.34%
27	Philadelphia	+6.24%
28	Tampa	+6.14%
29	Las Vegas	+4.40%
30	Hartford	+4.29%
31	San Antonio	+3.95%
32	Jacksonville	+3.80%
33	Sacramento	+3.78%
34	St. Louis	+3.76%
35	Chicago	+3.14%
36	Houston	+2.81%
37	Louisville	+1.32%
38	Birmingham	+0.91%
39	Detroit	+0.53%
40	Oklahoma City	+0.16%
41	virginia Beach	+0.04%
42	Glaveland	-1.24%
43		-1.45%
44		-1.99%
45	Richmond	-3.04%
40	Richmond	-4.72%
4/	New Orleans	-7.83%
48	vvasnington	-10.60%
47	Riverside	-11.44%
50	виттаю	-18.19%

Table 4: 1-Year Change in Weighted Bicycle Accessibility to Jobs, Low Stress, 2019

Rank	Area	1-Year Change
1	Charlotte	+53.82%
2	Raleigh	+44.01%
3	Los Angeles	+31.85%
4	Nashville	+25.00%
5	Milwaukee	+24.63%
6	Hartford	+20.55%
7	Richmond	+19.69%
8	Dallas	+19.17%
9	Las Vegas	+15.95%
10	Kansas City	+12.02%
11	Virginia Beach	+11.99%
12	Riverside	+11.77%
13	Birmingham	+11.52%
14	Pittsburgh	+10.53%
15	Cincinnati	+9.00%
16	San Diego	+8.95%
17	Seattle	+8.21%
18	New York	+7.56%
19	Boston	+7.26%
20	Memphis	+5.41%
21	Atlanta	+5.40%
22	Philadelphia	+5.02%
23	Houston	+4.20%
24	Jacksonville	+4.20%
25	Austin	+3.66%
26	Phoenix	+2.74%
27	Orlando	+2.73%
28	Portland	+2.71%
29	San Francisco	+2.38%
30	San Jose	+1.83%
31	Miami	+1.42%
32	Denver	+1.30%
33	Oklahoma City	+0.78%
34	Tampa	+0.63%
35	Cleveland	-0.35%
36	Louisville	-0.66%
37	Detroit	-0.70%
38	Baltimore	-0.86%
39	Washington	-0.97%
40	Salt Lake City	-1.51%
41	Buffalo	-1.57%
42	Sacramento	-1.63%
43	Providence	-1.//%
44	St. Louis	-1.81%
45	New Orleans	-2.15%
40	Chicago	-2.16%
4/		-3.20%
48	San Antonio	-3.37%
49	Minnoaralia	-4.73%
50	winneapolis	-6.63%

Table 5: 1-Year Change in Weighted Bicycle Accessibility to Jobs, Medium Stress, 2019

2.1 Metropolitan Area Rankings

The low-stress and medium-stress rankings of biking accessibility across U.S. cities for 2019 are shown in Table 6 and Table 7, respectively. The first column provides a weighted average, where the jobs reachable within each threshold are given a decreasing weight as travel time increases. A job reachable within 10 minutes counts more towards the ranking than a job reachable within 20, and so on. The 10 metro areas whose workers can, on average, reach the most jobs on both low-stress and medium-stress bike networks are listed below. Within the specific time thresholds, the rankings vary.

	Low-Stress		Medium-Stress
1.	New York	1.	New York
2.	San Francisco	2.	San Francisco
3.	Portland	3.	Chicago
4.	Boston	4.	Los Angeles
5.	Los Angeles	5.	Denver
6.	Denver	6.	Boston
7.	Chicago	7.	Seattle
8.	Seattle	8.	Portland
9.	Philadelphia	9.	San Jose
10.	Minneapolis–Saint Paul	10.	Minneapolis–Saint Paul

The ten metro areas with the greatest 1-year gain in accessibility to jobs by biking, for low-stress and medium-stress networks are:

	Low-Stress		Medium-Stress
1.	Raleigh	1.	Charlotte
2.	Boston	2.	Raleigh
3.	Portland	3.	Los Angeles
4.	Nashville	4.	Nashville
5.	Dallas	5.	Milwaukee
6.	Seattle	6.	Hartford
7.	Denver	7.	Richmond
8.	San Francisco	8.	Dallas
9.	Los Angeles	9.	Las Vegas
10.	San Jose	10.	Kansas City

Additional details about each metropolitan area, including block-level maps of accessibility, are presented in Section 4. The low-stress and medium-stress rankings of 1-year change in biking accessibility are shown in Table 8 and Table 9, respectively. The first column again gives a ranking based on weighted average across travel time thresholds; the following columns give rankings for specific travel time thresholds.

Rank	Weighted Average	10 min	20 min	30 min	40 min	50 min	60 min
1	New York	New York	New York	New York	New York	New York	New York
2	San Francisco	San Francisco	San Francisco	San Francisco	San Francisco	San Francisco	San Francisco
3	Portland	Boston	Portland	Portland	Portland	Portland	Portland
4	Boston	Los Angeles	Boston	Boston	Boston	Boston	Boston
5	Los Angeles	Seattle	Philadelphia	Denver	Denver	Denver	Denver
6	Denver	Portland	Los Angeles	Los Angeles	Minneapolis	Minneapolis	Minneapolis
7	Chicago	Chicago	Seattle	Minneapolis	Los Angeles	Los Angeles	Los Angeles
8	Seattle	Philadelphia	Chicago	Chicago	Chicago	Chicago	Chicago
9	Philadelphia	Washington	Denver	Seattle	Washington	Washington	Washington
10	Minneapolis	San Jose	Washington	Washington	Seattle	Salt Lake City	Baltimore
11	Washington	Denver	San Jose	Philadelphia	San Jose	Baltimore	Salt Lake City
12	San Jose	Baltimore	Minneapolis	San Jose	Salt Lake City	Seattle	Seattle
13	Baltimore	Minneapolis	Baltimore	Baltimore	Baltimore	San Jose	San Jose
14	Salt Lake City	Salt Lake City	Salt Lake City	Salt Lake City	Philadelphia	Detroit	Detroit
15	Detroit	Miami	Phoenix	Detroit	Detroit	Philadelphia	Phoenix
16	Phoenix	Austin	Austin	Phoenix	Phoenix	Phoenix	Philadelphia
17	Austin	San Diego	Detroit	Austin	Oklahoma City	Louisville	Louisville
18	Columbus	New Orleans	Columbus	Columbus	Louisville	Oklahoma City	Oklahoma City
19	Louisville	Phoenix	Louisville	Louisville	Austin	Columbus	Columbus
20	Oklahoma City	Milwaukee	Oklahoma City	Oklahoma City	Columbus	Raleigh	Raleigh
21	Kansas City	Columbus	Kansas City	Raleigh	Raleigh	Austin	Kansas City
22	Miami	Sacramento	New Orleans	Kansas City	Kansas City	Kansas City	Austin
23	Raleigh	Richmond	Miami	Pittsburgh	Pittsburgh	Pittsburgh	Pittsburgh
24	New Orleans	Kansas City	Richmond	Cincinnati	Cincinnati	Cincinnati	Cincinnati
25	Pittsburgh	Pittsburgh	Pittsburgh	Buffalo	Buffalo	Indianapolis	Indianapolis
26	San Diego	Detroit	Cincinnati	New Orleans	Indianapolis	Richmond	Richmond
27	Milwaukee	Buffalo	San Diego	Richmond	New Orleans	Miami	Miami
28	Cincinnati	Cleveland	Milwaukee	Miami	Miami	New Orleans	New Orleans
29	Richmond	Indianapolis	Raleigh	Milwaukee	Milwaukee	Buffalo	Buffalo
30	Buffalo	Louisville	Buffalo	Indianapolis	Richmond	Milwaukee	Milwaukee
31	Indianapolis	Providence	Cleveland	San Diego	San Diego	San Diego	Dallas
32	Sacramento	Cincinnati	Indianapolis	Cleveland	Cleveland	Dallas	San Diego
33	Cleveland	Las Vegas	Sacramento	Sacramento	Sacramento	Sacramento	Sacramento
34	Dallas	Oklahoma City	Dallas	Dallas	Dallas	Cleveland	Cleveland
35	Atlanta	Dallas	San Antonio	Atlanta	Atlanta	Atlanta	Atlanta
36	San Antonio	Raleigh	Atlanta	San Antonio	San Antonio	San Antonio	San Antonio
37	Providence	St. Louis					
38	St. Louis	San Antonio	Providence	Providence	Nashville	Nashville	Nashville
39	Las Vegas	Houston	Charlotte	Charlotte	Charlotte	Charlotte	Charlotte
40	Charlotte	lampa	Las Vegas	Nashville	Providence	Providence	Providence
41	Nashville	Atlanta	Nashville	Las Vegas	Las Vegas	Las Vegas	Las Vegas
42	Houston	Charlotte	lampa	Houston	Houston	Houston	Houston
43	lampa	Orlando	Houston	Tampa	Tampa	Tampa	Tampa
44	Orlando	Nashville	Orlando	Orlando	Orlando	Orlando	Orlando
45	Virginia Beach	Virginia Beach	Virginia Beach	Jacksonville	Jacksonville	Jacksonville	Jacksonville
40	Hartford	Hartford	Jacksonville	virginia Beach	virginia Beach	Virginia Beach	Virginia Beach
4/	Jacksonville	Riverside	Hartford	Hartford	Hartford	Hartford	Hartford
48	Riverside	Jacksonville	Riverside	Riverside	Birmingham	Birmingham	Birmingham
49	Birmingham	Memphis	Birmingham	Birmingham	Riverside	Riverside	Riverside
50	Memphis	Birmingham	Memphis	Memphis	Memphis	Memphis	Memphis

Table 6: Rank of Accessibility by Metropolitan Area, Low Stress, 2019

Rank	Weighted Average	10 min	20 min	30 min	40 min	50 min	60 min
1	New York	New York	New York	New York	New York	New York	New York
2	San Francisco	San Francisco	San Francisco	San Francisco	San Francisco	San Francisco	Chicago
3	Chicago	Seattle	Chicago	Chicago	Chicago	Chicago	Denver
4	Los Angeles	Chicago	Los Angeles	Los Angeles	Los Angeles	Los Angeles	Los Angeles
5	Denver	Los Angeles	Seattle	Denver	Denver	Denver	San Francisco
6	Boston	Boston	Boston	Boston	Boston	Minneapolis	Minneapolis
7	Seattle	Philadelphia	Philadelphia	Portland	Portland	San Jose	San Jose
8	Portland	Washington	Denver	San Jose	San Jose	Portland	Portland
9	San Jose	Portland	Portland	Seattle	Minneapolis	Boston	Boston
10	Minneapolis	Denver	Washington	Minneapolis	Seattle	Seattle	Seattle
11	Washington	San Jose	San Jose	Washington	Washington	Washington	Columbus
12	Philadelphia	Minneapolis	Minneapolis	Philadelphia	Philadelphia	Columbus	Washington
13	Salt Lake City	Miami	Salt Lake City	Salt Lake City	Columbus	Philadelphia	Las Vegas
14	Columbus	Salt Lake City	Columbus	Columbus	Salt Lake City	Las Vegas	Philadelphia
15	Las Vegas	New Orleans	Miami	Las Vegas	Las Vegas	Salt Lake City	Phoenix
16	Miami	Baltimore	Austin	Miami	Miami	Phoenix	Salt Lake City
17	Phoenix	San Diego	Las Vegas	Austin	Phoenix	Miami	Miami
18	Austin	Milwaukee	Baltimore	Phoenix	Buffalo	Buffalo	Buffalo
19	Buffalo	Columbus	New Orleans	Buffalo	Austin	Austin	Detroit
20	Baltimore	Austin	Phoenix	Baltimore	Detroit	Detroit	Austin
21	Milwaukee	Sacramento	Buffalo	New Orleans	Tampa	Cincinnati	Cincinnati
22	New Orleans	Buffalo	Milwaukee	Tampa	Baltimore	Tampa	Tampa
23	Tampa	Phoenix	San Diego	Milwaukee	Milwaukee	Baltimore	Baltimore
24	Detroit	Las Vegas	Tampa	Detroit	Cincinnati	Milwaukee	Milwaukee
25	Cincinnati	Richmond	Cincinnati	Cincinnati	Cleveland	Cleveland	Cleveland
26	San Diego	Dallas	Sacramento	San Diego	New Orleans	Pittsburgh	Pittsburgh
27	Cleveland	Pittsburgh	Pittsburgh	Cleveland	San Diego	San Diego	Sacramento
28	Pittsburgh	Tampa	Detroit	Pittsburgh	Pittsburgh	Kansas City	Kansas City
29	Sacramento	Houston	Cleveland	Sacramento	Dallas	Sacramento	San Diego
30	Dallas	Providence	Dallas	Dallas	Kansas City	New Orleans	Dallas
31	Kansas City	Cincinnati	Richmond	Kansas City	Sacramento	Dallas	Charlotte
32	Orlando	Cleveland	Kansas City	Louisville	Orlando	Orlando	Raleigh
33	Richmond	Kansas City	Hartford	St. Louis	Charlotte	Charlotte	New Orleans
34	Louisville	Hartford	Houston	Orlando	Louisville	Raleigh	Orlando
35	Indianapolis	Indianapolis	Louisville	Richmond	St. Louis	Louisville	Indianapolis
36	St. Louis	St. Louis	Indianapolis	Charlotte	Indianapolis	Indianapolis	Atlanta
3/	Charlotte	Detroit	Orlando	Indianapolis	Atlanta	Atlanta	Louisville
38	Houston	Orlando	St. Louis	Houston	Raleigh	St. Louis	St. Louis
39	Atlanta	Louisville	Atlanta	Atlanta	Richmond	Richmond	Houston
40	Kaleign	Charlotte	Providence	Hartford	Houston	Houston	San Antonio Diabas an al
41	Fartford	San Antonio	Charlotte Sen Antonio	Kaleign San Antania	San Antonio	San Antonio	Richmond
42	San Antonio	Atlanta Oldaharra City	San Antonio Dalajak	San Antonio Dravidance			
43	Providence Oklahoma City	Drianoma City	Oklahama City	Frovidence			Jacksonvine
44		Virginia Roach		Oklahoma City	Browidonco	Maabvilla	Naabvilla
45	Nachville	Riverside	Riverside	Nashvillo	Nashvillo	Providence	Providence
40	Rivercide	lacksonvillo	Nashvillo	Riverside	Riverside	Riverside	Riverside
48	Virginia Reach	Nashvillo	Virginia Reach	Birmingham	Birmingham	Birmingham	Birmingham
40	Birmingham	Memphis	Birmingham	Virginia Beach	Virginia Reach	Memohis	Virginia Beach
50	Memohis	Birmingham	Memohis	Memohis	Memohis	Virginia Reach	Memphis
	pina	Enningham	mempins	mempins	Mempilis	Ingina Deach	Mempins

Table 7: Rank of Accessibility by Metropolitan Area, Medium Stress, 2019

Rank	Weighted Average	10 min	20 min	30 min	40 min	50 min	60 min
1	Raleigh	Raleigh	Raleigh	Raleigh	Raleigh	Raleigh	Raleigh
2	Boston	Portland	Boston	Boston	Boston	Boston	Boston
3	Portland	Boston	Portland	Nashville	Nashville	Nashville	Nashville
4	Nashville	Seattle	Nashville	Dallas	Dallas	Dallas	Dallas
5	Dallas	Nashville	Dallas	Portland	Portland	Seattle	Seattle
6	Seattle	Dallas	Seattle	Seattle	Seattle	Portland	Portland
7	Denver	Charlotte	Denver	Denver	Denver	Denver	Denver
8	San Francisco	Austin	San Francisco	San Francisco	San Francisco	San Francisco	Los Angeles
9	Los Angeles	San Jose	Minneapolis	San Diego	Los Angeles	Los Angeles	San Francisco
10	San Jose	Kansas City	Charlotte	San Jose	San Jose	Austin	Miami
11	Austin	Los Angeles	San Jose	Los Angeles	San Diego	San Diego	San Diego
12	Charlotte	San Francisco	Austin	Charlotte	Austin	San Jose	Austin
13	Kansas Citv	Minneapolis	San Diego	Austin	Salt Lake City	Miami	Kansas Citv
14	San Diego	Atlanta	Providence	Providence	Cincinnati	Salt Lake Citv	San Jose
15	Salt Lake City	Orlando	Kansas City	Cincinnati	Miami	Kansas City	St. Louis
16	New York	Memphis	Los Angeles	Salt Lake City	Charlotte	New York	Phoenix
17	Cincinnati	Columbus	New York	Kansas City	Kansas Citv	Phoenix	New York
18	Minneapolis	Phoenix	Memphis	New York	New York	Pittsburgh	Pittsburgh
19	Providence	San Diego	Cincinnati	Minneapolis	Phoenix	Charlotte	Salt Lake City
20	Phoenix	Jacksonville	Salt Lake City	Miami	Providence	St. Louis	Providence
21	Memphis	Hartford	Miami	Memphis	Pittsburgh	Providence	Orlando
22	Miami	Philadelphia	Columbus	Pittsburgh	Memphis	Cincinnati	Memphis
23	Columbus	Louisville	Atlanta	Phoenix	Tampa	Memphis	Tampa
24	Pittsburgh	Tampa	Tampa	Columbus	Columbus	Tampa	Philadelphia
25	Orlando	Sacramento	Phoenix	Tampa	Philadelphia	Orlando	Columbus
26	Atlanta	Salt Lake City	Orlando	Atlanta	Orlando	Philadelphia	Charlotte
27	Philadelphia	Houston	Philadelphia	Philadelphia	St. Louis	Columbus	Cincinnati
28	Tampa	Las Vegas	Pittsburgh	Orlando	Las Vegas	Hartford	Hartford
29	Las Vegas	Pittsburgh	Las Vegas	St. Louis	Atlanta	Las Vegas	Las Vegas
30	Hartford	Cincinnati	Sacramento	Las Vegas	Hartford	San Antonio	San Antonio
31	San Antonio	Chicago	San Antonio	San Antonio	San Antonio	Atlanta	Minneapolis
32	Jacksonville	Denver	Jacksonville	Hartford	Minneapolis	Chicago	Atlanta
33	Sacramento	San Antonio	Chicago	Chicago	Sacramento	Sacramento	Jacksonville
34	St. Louis	Providence	Hartford	Sacramento	Chicago	Houston	Virginia Beach
35	Chicago	Miami	St. Louis	Jacksonville	Jacksonville	Virginia Beach	Houston
36	Houston	New York	Louisville	Houston	Houston	Jacksonville	Sacramento
37	Louisville	Birmingham	Houston	Virginia Beach	Virginia Beach	Minneapolis	Chicago
38	Birmingham	St. Louis	Indianapolis	Detroit	Birmingham	Birmingham	Oklahoma City
39	Detroit	Detroit	Detroit	Birmingham	Detroit	Oklahoma City	Birmingham
40	Oklahoma City	Cleveland	Oklahoma City	Louisville	Oklahoma City	Baltimore	Baltimore
41	Virginia Beach	Richmond	Virginia Beach	Oklahoma City	Baltimore	Louisville	Indianapolis
42	Baltimore	Oklahoma City	Birmingham	Baltimore	Louisville	Detroit	Louisville
43	Cleveland	Baltimore	Cleveland	Cleveland	Cleveland	Cleveland	Detroit
44	Indianapolis	Virginia Beach	Milwaukee	Indianapolis	Indianapolis	Indianapolis	Cleveland
45	Milwaukee	Milwaukee	Baltimore	Milwaukee	Milwaukee	Milwaukee	Milwaukee
46	Richmond	Indianapolis	Richmond	Richmond	Richmond	Richmond	Washington
47	New Orleans	Washington	New Orleans	New Orleans	Washington	Washington	Richmond
48	Washington	New Orleans	Washington	Washington	New Orleans	New Orleans	Riverside
49	Riverside	Riverside	Riverside	Riverside	Riverside	Riverside	New Orleans
50	Buffalo	Buffalo	Buffalo	Buffalo	Buffalo	Buffalo	Buffalo

Table 8: Rank of 1-Year Change in Accessibility by Metropolitan Area, Low Stress, 2019

Rank	Weighted Average	10 min	20 min	30 min	40 min	50 min	60 min
1	Charlotte	Raleigh	Raleigh	Charlotte	Charlotte	Charlotte	Charlotte
2	Raleigh	Charlotte	Charlotte	Raleigh	Raleigh	Raleigh	Milwaukee
3	Los Angeles	Los Angeles	Los Angeles	Los Angeles	Los Angeles	Milwaukee	Raleigh
4	Nashville	Nashville	Nashville	Hartford	Milwaukee	Los Angeles	Los Angeles
5	Milwaukee	Riverside	Hartford	Nashville	Nashville	Nashville	Nashville
6	Hartford	Richmond	Richmond	Richmond	Hartford	Dallas	Las Vegas
7	Richmond	Hartford	Dallas	Milwaukee	Richmond	Hartford	Dallas
8	Dallas	Birmingham	Milwaukee	Dallas	Dallas	Richmond	Richmond
9	Las Vegas	Seattle	Riverside	Virginia Beach	Las Vegas	Las Vegas	Hartford
10	Kansas City	Dallas	Virginia Beach	Las Vegas	Virginia Beach	Pittsburgh	Pittsburgh
11	Virginia Beach	Memphis	Birmingham	Kansas City	Kansas City	San Diego	San Diego
12	Riverside	Austin	New York	Riverside	Pittsburgh	Virginia Beach	Kansas City
13	Birmingham	Milwaukee	Cincinnati	Birmingham	Riverside	Kansas City	Virginia Beach
14	Pittsburgh	New York	Kansas City	Cincinnati	Birmingham	Birmingham	Birmingham
15	Cincinnati	Kansas City	Boston	Pittsburgh	San Diego	Seattle	Seattle
16	San Diego	Virginia Beach	Las Vegas	New York	Cincinnati	Riverside	Houston
17	Seattle	Boston	Seattle	Boston	Boston	Cincinnati	Cincinnati
18	New York	Jacksonville	Memphis	San Diego	Seattle	Houston	Riverside
19	Boston	Atlanta	Atlanta	Memphis	Philadelphia	Boston	Jacksonville
20	Memphis	Las Vegas	San Diego	Seattle	Houston	Philadelphia	Boston
21	Atlanta	Louisville	Pittsburgh	Atlanta	New York	New York	Philadelphia
22	Philadelphia	Orlando	Philadelphia	Philadelphia	Atlanta	Jacksonville	New York
23	Houston	Phoenix	Portland	Houston	Memphis	Atlanta	Austin
24	Jacksonville	Pittsburgh	Austin	Jacksonville	Jacksonville	Austin	Atlanta
25	Austin	Cincinnati	Washington	Phoenix	Austin	San Francisco	San Francisco
26	Phoenix	Washington	Miami	Austin	Orlando	Memphis	Denver
27	Orlando	San Diego	Phoenix	Portland	San Francisco	Denver	Phoenix
28	Portland	Portland	Orlando	Orlando	Phoenix	Orlando	San Jose
29	San Francisco	Miami	Providence	San Francisco	Portland	Phoenix	Orlando
30	San Jose	Providence	Jacksonville	Miami	Denver	Portland	Oklahoma City
31	Miami	San Francisco	San Jose	San Jose	Oklahoma City	Oklahoma City	Portland
32	Denver	San Jose	San Francisco	Denver	San Jose	San Jose	Chicago
33	Oklahoma City	Houston	Houston	Tampa	Tampa	Chicago	Memphis
34	Tampa	Philadelphia	Tampa	Oklahoma City	Miami	Indianapolis	Detroit
35	Cleveland	Buttalo	Louisville	Cleveland	Salt Lake City	Tampa	Miami —
36	Louisville	San Antonio	Denver	Salt Lake City	Chicago	Miami	lampa
37	Detroit	lampa	Sacramento	Washington	Cleveland	Detroit	Baltimore
38	Baltimore	Sacramento	Oklahoma City	Detroit	Detroit	Salt Lake City	Indianapolis
39	Washington	Cleveland	Cleveland	Baltimore	Baltimore	Cleveland	Cleveland
40	Salt Lake City	Columbus	St. Louis	Louisville	Indianapolis	Baltimore	Buffalo
41			Detroit	St. LOUIS	Buπaio	Bumaio	New Orleans
42	Sacramento	Baltimore	Baltimore	Buffalo	Sacramento	New Orleans	Louisville
43	Providence	St. LOUIS	Columbus	Chicago Navy Orlagona	St. LOUIS	Sacramento	San Antonio
44	St. Louis	Detroit	Bumaio	New Orleans	New Orleans	St. Louis	Salt Lake City
45	New Orleans	New Orleans	Chicago	Providence	Louisville	Louisville	St. Louis
40	Columbus	Ninneapolis	Salt Lake City	Columbus	Columbus	San Antonio	Columbus
47	Columbus San Antonio	Salt Lake City	San Antonio	Locianapolia	Son Antonio	Washington	Minnoapolic
40	Indiananalia	Indiananalia	Minnoanalia		Providence	Minnoanalia	Washington
4 7	Minnoanalia	Chicago	Indiananalia	Minnoanalia	Minnoanalia	Providence	Providence
50	winneapons	Chicago	inulanapolis	winneapons	Minneapons	Tovidence	Tovidence

Table 9: Rank of 1-Year Change in Accessibility by Metropolitan Area, Medium Stress, 2019

2.2 Bicycle Network Characteristics

The length-wise proportion of bicycle travel network facilities which fall into each of the four LTS categories can be computed and tracked year-to-year. As cities continue to build additional bike lanes and paths, additional destinations become accessible by bike on lower-stress bicycle routes, and tracking the kilometers of facilities in each category allows assessment of the accessibility benefits associated with upgrading bicycle networks.

Table 10 shows the proportion of bicycle travel networks categorized as each LTS level within the included metro areas, for the OpenStreetMap data used in this report.

Area	Lowest Stress	Low Stress	Medium Stress	Highest Stress
Atlanta	74.0%	4.5%	8.1%	13.3%
Austin	64.0%	7.4%	12.4%	16.2%
Baltimore	65.9%	6.2%	11.8%	16.1%
Birmingham	74.5%	5.0%	9.7%	10.8%
Boston	73.3%	2.1%	9.4%	15.3%
Buffalo	64.4%	4.8%	15.5%	15.3%
Charlotte	74.1%	2.6%	9.8%	13.5%
Chicago	74.7%	3.4%	8.8%	13.1%
Cincinnati	61.4%	7.3%	15.2%	16.2%
Cleveland	66.9%	5.1%	14.4%	13.6%
Columbus	59.2%	12.7%	15.2%	13.0%
Dallas	66.9%	2.0%	9.8%	21.4%
Denver	71.0%	7.4%	10.5%	11.0%
Detroit	77.6%	4.5%	9.3%	8.5%
Hartford	73.8%	2.0%	10.4%	13.9%
Houston	67.9%	2.1%	10.6%	19.4%
Indianapolis	61.1%	13.6%	12.3%	13.0%
Jacksonville	70.1%	4.3%	13.2%	12.4%
Kansas City	67.7%	8.8%	10.4%	13.2%
Las Vegas	66.6%	4.4%	11.9%	17.2%
Los Angeles	70.0%	3.6%	10.7%	15.6%
Louisville	71.3%	6.6%	4.8%	17.4%
Memphis	66.8%	4.8%	13.3%	15.2%
Miami	70.0%	2.5%	12.7%	14.7%
Milwaukee	65.6%	3.9%	11.0%	19.5%
Minneapolis	69.2%	2.3%	16.4%	12.0%
Nashville	68.9%	9.8%	7.9%	13.5%
New Orleans	76.8%	2.5%	6.6%	14.1%
New York	75.2%	2.0%	10.0%	12.7%
Oklahoma City	73.4%	10.2%	6.1%	10.3%
Orlando	65.1%	4.9%	11.8%	18.2%
Philadelphia	69.4%	2.8%	12.6%	15.2%
Phoenix	69.8%	7.4%	9.4%	13.4%
Pittsburgh	62.4%	13.5%	10.7%	13.3%
Portland	58.8%	14.1%	17.0%	10.2%
Providence	74.4%	3.0%	8.7%	13.9%
Raleigh	73.4%	3.7%	8.5%	14.4%
Richmond	58.0%	3.4%	23.6%	15.0%
Riverside	65.9%	5.1%	11.8%	17.1%
Sacramento	66.2%	11.1%	13.0%	9.8%
Salt Lake City	65.4%	10.3%	10.4%	13.9%
San Antonio	69.8%	7.3%	6.1%	16.7%
San Diego	70.4%	4.1%	11.1%	14.4%
San Francisco	68.5%	7.1%	12.5%	11.9%
San Jose	61.3%	8.5%	16.4%	13.8%
Seattle	68.0%	8.2%	13.0%	10.9%
St. Louis	74.4%	6.3%	9.1%	10.2%
Tampa	73.7%	2.2%	12.8%	11.3%
Virginia Beach	68.5%	2.1%	15.5%	13.9%
Washington	69.7%	4.1%	11.5%	14.8%

Table 10: Proportion of Distance of Bicycle Networks By LTS Category, 2019

3 Discussion

This report is a companion to the work in reports *Access Across America: Transit 2019* and *Access Across America: Auto 2019*, and implements Level of Traffic Stress analysis on a national scale to provide more accurate bicycle accessibility metrics and allow for inter-metropolitan comparisons. Accessibility data are calculated for every Census block in the U.S.; data are aggregated and summarized within CBSAs for this report.

Not all jobs are the same. Some jobs are higher paying, some are lower skilled, and they exist in a variety of industries. Given sufficient data, one could differentiate accessibility by breaking down jobs by type and get different results. Accessibility to non-work locations (shopping, health care, education, etc.) is also important. Regardless of trip purpose, people who experience higher accessibility tend to travel shorter distances because origins and destinations are closer together.

But accessibility to jobs is not the only thing that people care about. If it were, cities would be situated on a minimum amount of space so people could live immediately adjacent to their jobs, or everyone would work from home. Measuring (and then valuing) accessibility to other opportunities and considering the trade-off between accessibility and living space are central problems of urban economics, regional science, and transportation and land-use planning. While being more accessible is generally better, there are costs as well as benefits associated with accessibility. If land is more valuable, its price is higher, and purchasers can afford less. Streets in places with more activities are inherently more crowded, and trips are less peaceful.

Accessibility is a function of both transportation networks and land use decisions, which has important policy implications. There are two broad avenues to increasing accessibility: improving transportation systems, and altering land use patterns. Neither of these things can be easily shifted overnight, but over time they do change—both through direct plans and action and through market forces. Within a bicycle context, transportation system improvements take the form of constructing new low-stress bicycle facilities, such as separated bike lanes, paths, and bicycle-minded crossing signals.

It is important to recognize that aggregate metrics such as these are also affected simply by the size of the areas being studied. For example, residents of central Minneapolis enjoy greater accessibility than those of central Milwaukee, but the expansive Minneapolis–Saint Paul metropolitan area includes far more suburban and exurban areas which exhibit significantly lower job densities than those within the urban core.

As of the 2016 version of LEHD LODES data, statistics for federal jobs and workers are no longer included in the datasets. Accessibility data included in this report may be less accurate in metropolitan areas with large proportions of federal jobs, such as Washington, D.C. However, the 2016 and 2017 versions of LEHD LODES data are consistent in the exclusion of federal jobs and workers, allowing for comparisons between two years of data.

3.1 Traffic Stress

The consideration of traffic stress and cycling comfort adds a layer of complexity to evaluating access to destinations by bicycle. A dense, compact city may have fewer low-stress bike routes into and out of its urban core, but residents may still experience high access to destinations due to the dense land-use; similarly, a lower-density city may have a robust and well-connected low-stress bicycle network, but residents experience lower access due to the smaller number of opportunities.

The four different LTS scores have some practical interpretations within accessibility analysis: if a cyclist were only willing to bike on off-street paths and nowhere else, their access to destinations in most places would be quite limited, and would be quantified by "lowest-stress" (LTS 1) access. "Low-stress" (LTS 2) access represents access experienced by people willing to use "good" bike infrastructure—namely, separated bike lanes and the paths included within the lowest-stress category. "Medium-stress" (LTS 3) access is experienced by people willing to use all bike infrastructure—lowest- and low-stress facilities, plus on-street unprotected bike lanes, certain shared lanes, and mixing with traffic on some non-arterial streets. LTS 4 access is "open streets" access—if all streets (except limited-access highways, freeways, and interstates, as these are excluded from the analysis) felt as safe as an off-street path, cyclists would experience this level of access.

Insights for bicycle urban planning can be found in comparing bicycle access at different LTS tolerances. Access levels equivalent to those currently provided at the "open streets" level could be experienced by the majority of people who cycle or are interested in cycling, if low-stress bike infrastructure were constructed on or very near important routes, such as urban arterials. Thus, comparing the access currently experienced on the low-stress network with that on the "open streets" network quantifies the degree to which job access could be improved by providing low-stress bicycle facilities on high-stress routes. This ratio is mapped in Section 4 for the metropolitan areas included in the study, with areas with a lower ratio of low-stress access to "open streets" access colored more intensely. Such areas may lack good connections to the low-stress bike network, and aggregate analysis at the neighborhood level may offer planners a tool to identify where investments in low-stress bicycle facilities would have the greatest benefit in improving access to destinations.

Many cities exhibit different rankings between their low-stress and medium-stress job accessibility metrics—for example, Philadelphia places 9th by low-stress access, but only 12th by medium-stress access, while San Jose places 12th by low-stress access, and 9th by medium-stress access. Residents in Philadelphia who are only willing to bike on low-stress facilities in general experience higher accessibility to jobs than those in San Jose; however, residents in San Jose who are willing to bike on all bicycle facilities experience higher access to jobs than those in Philadelphia.

3.2 Land Use Effects

Land use-based approaches to improving biking accessibility revolve around proximity and density for both origins and destinations. Proximity to destinations is implicitly important in the mode of biking, due to its lower speeds. Density is the manifestation of the increasing value of more accessible locations, and influences how many opportunities are reachable on a given destination parcel. As residential areas become denser, more residents experience the local accessibility to a variety of destinations, and non-automobile transportation modes increase in extent and mode share; as employment areas become denser, more jobs can be accessed through the same transportation systems, such as bicycle route networks.

Density is not determined solely by accessibility, however: land use policies can restrict density where it would otherwise be high, or encourage density where it might otherwise be low. Perhaps the most famous examples of such policies are Oregon's urban growth boundary laws, which encourage density by restricting the amount of land available for urban development, the Height of Buildings Act of 1910 which restricts density in the District of Columbia by limiting building heights, and 1990 Massachusetts state legislation effectively limiting building heights in Boston by prohibiting the casting of shadows onto the Boston Common park. Between these most visible examples lie a range of densityfocused urban policies, typically embedded in zoning codes, which both help encourage and constrain each city's biking accessibility performance. In general, areas with higher residential and employment density, with many low-stress bicycle routes between them, can achieve greater biking accessibility. Further, mixed-use development promotes less spatial separation between residential and employment centers, and provides even more biking accessibility to a wide variety of destinations.

At lower travel time thresholds, the job accessibility by bike experienced by a typical worker is influenced more by local employment density. At higher travel time thresholds, the job accessibility by bike experienced by a typical worker is influenced more by the presence of bicycle routes. This effect is exemplified in Table 7; looking beyond New York, San Francisco, and Chicago—which are sufficiently dense to rank highly in access across all travel time thresholds—the 6th and 7th rows show the importance of bike networks in less-dense cities. At lower travel time thresholds of 10 and 20 minutes, denser cities including Boston and Philadelphia rank higher. However, with travel time budgets of 30, 40, etc. minutes, job centers further away may become reachable—but only if a bicycle route exists to allow travel to that location. Portland and Minneapolis–St. Paul appear in ranks 6 and 7, beginning at 30 minutes of travel time, demonstrating that bike routes can provide high accessibility even in areas of lower density.

3.3 Comparisons to 2018 Data

Both the 2017 and 2016 versions of LEHD data do not include federal employment statistics, allowing for consistent comparisons between accessibility datasets using both sources. We compare both lowstress and medium-stress accessibility between the data for *Access Across America: Bike 2019* and *Access Across America: Bike 2018*, as well as comparing the bicycle network compositions in terms of kilometers of facility length by LTS category. Some significant changes were observed in certain cities for one or both of low- and medium-stress access: low-stress bicycle access to jobs in Raleigh increased by a very large 111%, while medium-stress bicycle access to jobs in Charlotte jumped by 54%; low-stress access to jobs in Buffalo dropped by 18%, and medium-stress access to jobs in Minneapolis dropped by 7%.

There are two main explanatory factors for significant changes in bicycle access: changes to the bike network composition in terms of LTS, and job growth and migration. Once built, roads are only very infrequently torn up and removed, so any negative changes in kilometers of road network facilities are likely due to upgrades (or downgrades) of LTS classification through the construction (or removal) or bicycle facilities. Portland's network changes show a 17.4% increase in kilometers of low-stress bicycle facilities, and 5.3% and 1.3% decreases in kilometers of medium stress and high stress roadways, respectively, suggesting a significant expansion of the city's low-stress bicycle network; this correlates with a very large increase in low-stress bicycle access. Portland also experienced a 1.9% increase in employment.

The city of Cambridge, MA, has placed increased emphasis on the installation of protected bikeways in recent years; while streets in a small, compact city are not great in length, low-stress connections for bicycle access are still critical. The Boston metropolitan region showed modest increases in kilometers of LTS 1 (+1.7%) and LTS 2 (+11.1%) roadways, with a very large 66% increase in lowstress access to jobs, a lot of which was due to increased bicycle accessibility in Cambridge. Raleigh, NC showed a marked increase in low-stress bike access of 111%, with kilometers of LTS 1 and LTS 2 roadway changing by +3.8% and +39.0%, respectively; bicycle access to jobs was relatively low in Raleigh in 2018, magnifying the effect of both the installation of bicycle facilities and refinement of OpenStreetMap data. Charlotte, NC tells a similar story — modest bicycle accessibility, combined with significant increases in kilometers of low- and medium-stress bike routes (+12.6% and +4.8%, respectively), yielded quite significant positive changes in low- and medium-stress bicycle access to jobs (+13.2% and +53.8%, respectively).

Minneapolis, MN shows the likely results of OpenStreetMap data refinement over time. The Minneapolis–St. Paul metropolitan region showed +2.9% and +13.9% changes in kilometers of LTS 1 and LTS 2 roadways, respectively, while showing a -8.4% change in kilometers of LTS 3 roadways, and a +16.6% increase in kilometers of LTS 4 roadways. New arterial roadways are seldom built in a city with an already completed street network, and LTS 3 roadways are transformed into LTS 4 roadways only in the cases of removal of bicycle facilities, relaxation of speed limits, or the (rare) adding of lanes. Low-stress bicycle access to jobs increased by 8.5%, while medium-stress access to jobs decreased by 6.6%, indicating that some roadways previously labeled as LTS 3 according to OSM data from 2018 became LTS 4 roadways, according to OSM data from 2019.

It is worth noting that bicycle network changes assigned to a given year may have existed previously, but never had been entered into OpenStreetMap by its user community. If, for instance, a group of community members in a city undertakes an effort to edit OpenStreetMap to include the city's bike network, which largely had not been tracked previously, then the data will reflect a large 1-year jump in kilometers of bicycle facilities, as well as potentially large changes in bicycle access. Thus, if not all existing bicycle facilities were tracked in previous years, then bicycle access may have been underreported, leading to larger changes in access than actually experienced by workers. Additionally, OpenStreetMap data are under consistent revision; because bicycle travel networks are sparse, relatively small numbers of changes in OpenStreetMap data for street segments and intersections can result in significant changes in access to jobs by bike. Such changes may be related to the installation of bicycle facilities, or may only be reflective of refinement of street classification, e.g. from "unclassified" to "residential.," or the proper tagging of traffic signals. Differentiating between these two types of network changes is difficult on a national scale.

3.4 Conclusions

The cities that make up the top 10 biking accessibility ranks for both the low-stress and mediumstress categories are mostly the same, with a few differences. Cities with large, high-density urban cores show up in both lists, reflecting the influence of land-use on bicycle access to destinations—that is, even if low-stress bicycle networks in New York, San Francisco, and Chicago were not extensive, local land-use density compensates for this lack. Cities with less-dense urban cores and fewer jobs overall, such as Portland and Minneapolis–St. Paul, may rely more on their bicycle networks to provide access to valuable destinations, and may perform well compared to their levels of "open streets" access, which depends more on land-use and job density. Sprawling cities with extensive urban highways and interstates, and extensive networks of urban arterials with a lack of bike infrastructure, such as Las Vegas, Dallas, and Los Angeles, do not perform as well for medium-stress bicycle access when compared to "open streets" access, as shown by their lower medium-stress percentage ratios. Further, the total employment within a metropolitan area is not necessarily a good predictor of bicycle access to jobs; for instance, the Minneapolis–St. Paul metropolitan area is ranked 14th largest by total employment in Table 1, but ranks 10th by both access to jobs on low-stress and medium-stress bicycle networks. Conversely, Houston ranks 5th by total employment, but 42nd and 38th by access to jobs on low-stress and medium-stress bike networks, respectively.

The ratios comparing low-stress and medium-stress accessibility to "open streets" accessibility allow comparisons of bicycle network performance between cities of different sizes. The metropolitan areas which perform the best when comparing medium-stress access to the maximum possible bike access— San Francisco, Portland, New York, Minneapolis, and Denver—all have bicycle networks which, on average, allow their residents to access over 70% of the job opportunities which can be accessed by biking on the "open streets" network. This performance metric assesses how well a metropolitan area's bicycle network allows people to reach the available valuable opportunities.

We report rankings for both low stress and medium stress, because most existing bicycle networks in North American cities include some combination of both categories. Not all bike facilities in North American cities are low-stress, but medium-stress facilities (unprotected bike lanes on slightly busier roads, certain applications of "sharrows" for shared lanes, etc.) can be common, and are important to include when measuring access to destinations on the entire bike network. If the low-stress accessibility in a city is close to the medium-stress accessibility, that may indicate that the low-stress bicycle network performs well and is well-built—relatedly, it may indicate that a city's bike network predominantly includes low-stress facilities.

Land use systems and the non-motorized transportation landscapes are dynamic, and this report presents only a single snapshot in time. In constantly-evolving systems like these, it is also critical to monitor changes over time. A city which adopts a goal of increasing biking accessibility and safety (e.g., a comprehensive bike plan) should be evaluated based on how effectively it advances that goal relative to a baseline. Using these data as a starting point, future reports in the Access Across America: Biking series will track the way that biking accessibility in these metropolitan areas evolves in response to transportation and safety investments, as well as land use decisions.

4 Metropolitan Area Data and Maps

The following pages present summary accessibility data and maps for each of the included metropolitan areas. Metropolitan areas are presented in alphabetical order. The first map for each metropolitan area shows 30-minute biking accessibility values at the Census block level, on medium-stress bicycle networks; areas of more intense color have higher access to jobs. The second map shows the ratio of low-stress accessibility to "open streets" accessibility; areas of more intense, deeper color have lower access to jobs, on low-stress bicycle networks, as a percentage of the maximum access possible (LTS 4), and lighter-colored areas have higher low-stress access to jobs. Areas colored in light grey on the second map reflect census blocks where "open streets" bicycle accessibility is 0.

On the data summary pages, three different chart scales are used in the first chart to accommodate the wide range of accessibility values across metropolitan areas. The second chart for each metropolitan area shows the accessibility ratios for lowest-stress, low-stress, and medium-stress bicycle networks compared to the maximum of "open streets" access. Cities with lower percentages for low-stress and medium-stress accessibility may have lower-performing bicycle networks, and cities with higher percentage ratios for low-stress and medium-stress accessibility may have more extensive, well-performing bicycle networks.

Atlanta-Sandy Springs-Marietta, GA

Rank by Weighted Low-Stress Bike Accessibility	35
Rank by Weighted Medium-Stress Bike Accessibility	39
Rank by Change in Low-Stress Bike Accessibility	26
Rank by Change in Medium-Stress Bike Accessibility	21
Rank by Total Employment	8
Total Jobs	2,637,483
Average Job Density (per km²)	122
Total Workers	2,534,711
Average Worker Density (per km ²)	117

Job and worker totals are based on LEHD estimates and may not match other sources.

Biking Job Accessibility by Travel Time Threshold

1-Year Change in Biking Job Accessibility by Travel Time Threshold

Atlanta-Sandy Springs-Marietta, GA

Weighted Job Accessibility Ratio, Bike Networks to Open Streets (LTS 4)

Kilometers of Bikeable Streets by LTS Category (Percent Change from 2018)

Atlanta-Sandy Springs-Marietta, GA

CBSA boundary —

Atlanta-Sandy Springs-Marietta, GA

Ratio of Weighted Jobs (Biking, Low-Stress to Open Streets)

Austin

Austin-Round Rock-San Marcos, TX

Rank by Weighted Low-Stress Bike Accessibility	17
Rank by Weighted Medium-Stress Bike Accessibility	18
Rank by Change in Low-Stress Bike Accessibility	11
Rank by Change in Medium-Stress Bike Accessibility	25
Rank by Total Employment	28
Total Jobs	1,004,341
Average Job Density (per km²)	92
Total Workers	967,584
Average Worker Density (per km ²)	89

Job and worker totals are based on LEHD estimates and may not match other sources.

Biking Job Accessibility by Travel Time Threshold

1-Year Change in Biking Job Accessibility by Travel Time Threshold

Austin

Austin-Round Rock-San Marcos, TX

Weighted Job Accessibility Ratio, Bike Networks to Open Streets (LTS 4)

Kilometers of Bikeable Streets by LTS Category (Percent Change from 2018)

Austin

Austin-Round Rock-San Marcos, TX

Austin

Austin-Round Rock-San Marcos, TX

Baltimore-Towson, MD

Rank by Weighted Low-Stress Bike Accessibility	13
Rank by Weighted Medium-Stress Bike Accessibility	20
Rank by Change in Low-Stress Bike Accessibility	42
Rank by Change in Medium-Stress Bike Accessibility	38
Rank by Total Employment	21
Total Jobs	1,316,328
Average Job Density (per km²)	195
Total Workers	1,277,911
Average Worker Density (per km ²)	190

Job and worker totals are based on LEHD estimates and may not match other sources.

Biking Job Accessibility by Travel Time Threshold

Baltimore-Towson, MD

Weighted Job Accessibility Ratio, Bike Networks to Open Streets (LTS 4)

Baltimore-Towson, MD

Baltimore-Towson, MD

Birmingham

Birmingham-Hoover, AL

Rank by Weighted Low-Stress Bike Accessibility	49
Rank by Weighted Medium-Stress Bike Accessibility	49
Rank by Change in Low-Stress Bike Accessibility	38
Rank by Change in Medium-Stress Bike Accessibility	13
Rank by Total Employment	50
Total Jobs	510,537
Average Job Density (per km ²)	37
Total Workers	479,837
Average Worker Density (per km ²)	35

Job and worker totals are based on LEHD estimates and may not match other sources.

Biking Job Accessibility by Travel Time Threshold

Birmingham

Birmingham-Hoover, AL

Weighted Job Accessibility Ratio, Bike Networks to Open Streets (LTS 4)

Birmingham

Birmingham-Hoover, AL

Birmingham Birmingham-Hoover, AL

Boston-Cambridge-Quincy, MA-NH

4
6
2
19
10
2,682,278
297
2,464,508
273

Job and worker totals are based on LEHD estimates and may not match other sources.

Biking Job Accessibility by Travel Time Threshold

Boston-Cambridge-Quincy, MA-NH

Weighted Job Accessibility Ratio, Bike Networks to Open Streets (LTS 4)

Boston-Cambridge-Quincy, MA-NH

Boston-Cambridge-Quincy, MA-NH

Buffalo

Buffalo-Niagara Falls, NY

Rank by Weighted Low-Stress Bike Accessibility	30
Rank by Weighted Medium-Stress Bike Accessibility	19
Rank by Change in Low-Stress Bike Accessibility	50
Rank by Change in Medium-Stress Bike Accessibility	41
Rank by Total Employment	48
Total Jobs	546,694
Average Job Density (per km²)	135
Total Workers	525,947
Average Worker Density (per km ²)	130

Job and worker totals are based on LEHD estimates and may not match other sources.

Biking Job Accessibility by Travel Time Threshold

Buffalo Buffalo-Niagara Falls, NY

Weighted Job Accessibility Ratio, Bike Networks to Open Streets (LTS 4)

Buffalo Buffalo-Niagara Falls, NY

Buffalo Buffalo-Niagara Falls, NY

Charlotte-Gastonia-Rock Hill, NC-SC

40
37
12
1
34
1,037,014
130
930,190
116

Job and worker totals are based on LEHD estimates and may not match other sources.

Biking Job Accessibility by Travel Time Threshold

Charlotte-Gastonia-Rock Hill, NC-SC

100% 75% 50% 25% 8.5% 9.9% Lowest Stress Lowest Stress Low Stress

Weighted Job Accessibility Ratio, Bike Networks to Open Streets (LTS 4)

Charlotte-Gastonia-Rock Hill, NC-SC

Charlotte-Gastonia-Rock Hill, NC-SC

Chicago

Chicago-Joliet-Naperville, IL-IN-WI

Rank by Weighted Low-Stress Bike Accessibility	7
Rank by Weighted Medium-Stress Bike Accessibility	3
Rank by Change in Low-Stress Bike Accessibility	35
Rank by Change in Medium-Stress Bike Accessibility	46
Rank by Total Employment	3
Total Jobs	4,559,884
Average Job Density (per km²)	245
Total Workers	4,448,938
Average Worker Density (per km ²)	239

Job and worker totals are based on LEHD estimates and may not match other sources.

Biking Job Accessibility by Travel Time Threshold

Chicago Chicago-Joliet-Naperville, IL-IN-WI

Weighted Job Accessibility Ratio, Bike Networks to Open Streets (LTS 4)

Chicago

Chicago-Joliet-Naperville, IL-IN-WI

Chicago Chicago-Joliet-Naperville, IL-IN-WI

Cincinnati-Middletown, OH-KY-IN

Rank by Weighted Low-Stress Bike Accessibility	28
Rank by Weighted Medium-Stress Bike Accessibility	25
Rank by Change in Low-Stress Bike Accessibility	17
Rank by Change in Medium-Stress Bike Accessibility	15
Rank by Total Employment	25
Total Jobs	1,051,395
Average Job Density (per km²)	92
Total Workers	1,045,101
Average Worker Density (per km ²)	92

Job and worker totals are based on LEHD estimates and may not match other sources.

Biking Job Accessibility by Travel Time Threshold

Cincinnati-Middletown, OH-KY-IN

Weighted Job Accessibility Ratio, Bike Networks to Open Streets (LTS 4)

Cincinnati-Middletown, OH-KY-IN

Cincinnati-Middletown, OH-KY-IN

Cleveland-Elyria-Mentor, OH

Rank by Weighted Low-Stress Bike Accessibility	33
Rank by Weighted Medium-Stress Bike Accessibility	27
Rank by Change in Low-Stress Bike Accessibility	43
Rank by Change in Medium-Stress Bike Accessibility	35
Rank by Total Employment	30
Total Jobs	1,023,177
Average Job Density (per km²)	198
Total Workers	961,969
Average Worker Density (per km ²)	186

Job and worker totals are based on LEHD estimates and may not match other sources.

Biking Job Accessibility by Travel Time Threshold

Cleveland-Elyria-Mentor, OH

Weighted Job Accessibility Ratio, Bike Networks to Open Streets (LTS 4)

Cleveland-Elyria-Mentor, OH

Cleveland-Elyria-Mentor, OH

Columbus

Columbus, OH

Rank by Weighted Low-Stress Bike Accessibility	18
Rank by Weighted Medium-Stress Bike Accessibility	14
Rank by Change in Low-Stress Bike Accessibility	23
Rank by Change in Medium-Stress Bike Accessibility	47
Rank by Total Employment	32
Total Jobs	1,025,982
Average Job Density (per km²)	100
Total Workers	946,698
Average Worker Density (per km ²)	92

Job and worker totals are based on LEHD estimates and may not match other sources.

Biking Job Accessibility by Travel Time Threshold

Columbus

Columbus, OH

Weighted Job Accessibility Ratio, Bike Networks to Open Streets (LTS 4)

Columbus

Columbus, OH

Columbus

Columbus, OH

Dallas

Dallas-Fort Worth-Arlington, TX

Rank by Weighted Low-Stress Bike Accessibility	34
Rank by Weighted Medium-Stress Bike Accessibility	30
Rank by Change in Low-Stress Bike Accessibility	5
Rank by Change in Medium-Stress Bike Accessibility	8
Rank by Total Employment	4
Total Jobs	3,546,551
Average Job Density (per km ²)	153
Total Workers	3,366,285
Average Worker Density (per km²)	146

Job and worker totals are based on LEHD estimates and may not match other sources.

Biking Job Accessibility by Travel Time Threshold

Dallas Dallas-Fort Worth-Arlington, TX

Weighted Job Accessibility Ratio, Bike Networks to Open Streets (LTS 4)

Dallas Dallas-Fort Worth-Arlington, TX

Dallas Dallas-Fort Worth-Arlington, TX

Denver-Aurora-Broomfield, CO

Rank by Weighted Low-Stress Bike Accessibility	6
Rank by Weighted Medium-Stress Bike Accessibility	5
Rank by Change in Low-Stress Bike Accessibility	7
Rank by Change in Medium-Stress Bike Accessibility	32
Rank by Total Employment	18
Total Jobs	1,450,715
Average Job Density (per km²)	67
Total Workers	1,395,732
Average Worker Density (per km ²)	65

Job and worker totals are based on LEHD estimates and may not match other sources.

Biking Job Accessibility by Travel Time Threshold

Denver-Aurora-Broomfield, CO

Weighted Job Accessibility Ratio, Bike Networks to Open Streets (LTS 4)

Denver-Aurora-Broomfield, CO

CBSA boundary -

Denver-Aurora-Broomfield, CO

Detroit

Detroit-Warren-Livonia, MI

Rank by Weighted Low-Stress Bike Accessibility	15
Rank by Weighted Medium-Stress Bike Accessibility	24
Rank by Change in Low-Stress Bike Accessibility	39
Rank by Change in Medium-Stress Bike Accessibility	37
Rank by Total Employment	13
Total Jobs	1,934,459
Average Job Density (per km²)	192
Total Workers	1,915,549
Average Worker Density (per km ²)	190

Job and worker totals are based on LEHD estimates and may not match other sources.

Biking Job Accessibility by Travel Time Threshold

Detroit

Detroit-Warren-Livonia, MI

Weighted Job Accessibility Ratio, Bike Networks to Open Streets (LTS 4)

Detroit

Detroit-Warren-Livonia, MI

Detroit

Detroit-Warren-Livonia, MI

Hartford-West Hartford-East Hartford, CT

Rank by Weighted Low-Stress Bike Accessibility	46
Rank by Weighted Medium-Stress Bike Accessibility	41
Rank by Change in Low-Stress Bike Accessibility	30
Rank by Change in Medium-Stress Bike Accessibility	6
Rank by Total Employment	45
Total Jobs	637,565
Average Job Density (per km²)	163
Total Workers	595,341
Average Worker Density (per km ²)	152

Job and worker totals are based on LEHD estimates and may not match other sources.

Biking Job Accessibility by Travel Time Threshold

Hartford-West Hartford-East Hartford, CT

Weighted Job Accessibility Ratio, Bike Networks to Open Streets (LTS 4)

Hartford-West Hartford-East Hartford, CT

Hartford-West Hartford-East Hartford, CT

Houston-Sugar Land-Baytown, TX

Rank by Weighted Low-Stress Bike Accessibility	42
Rank by Weighted Medium-Stress Bike Accessibility	38
Rank by Change in Low-Stress Bike Accessibility	36
Rank by Change in Medium-Stress Bike Accessibility	23
Rank by Total Employment	5
Total Jobs	2,977,082
Average Job Density (per km²)	130
Total Workers	2,894,863
Average Worker Density (per km ²)	127

Job and worker totals are based on LEHD estimates and may not match other sources.

Biking Job Accessibility by Travel Time Threshold

Houston-Sugar Land-Baytown, TX

Weighted Job Accessibility Ratio, Bike Networks to Open Streets (LTS 4)

Houston-Sugar Land-Baytown, TX

Houston-Sugar Land-Baytown, TX

Indianapolis

Indianapolis-Carmel, IN

Rank by Weighted Low-Stress Bike Accessibility	31
Rank by Weighted Medium-Stress Bike Accessibility	35
Rank by Change in Low-Stress Bike Accessibility	44
Rank by Change in Medium-Stress Bike Accessibility	49
Rank by Total Employment	35
Total Jobs	1,012,511
Average Job Density (per km²)	101
Total Workers	919,836
Average Worker Density (per km ²)	92

Job and worker totals are based on LEHD estimates and may not match other sources.

Biking Job Accessibility by Travel Time Threshold

Indianapolis

Indianapolis-Carmel, IN

Weighted Job Accessibility Ratio, Bike Networks to Open Streets (LTS 4)

Indianapolis

Indianapolis-Carmel, IN

Indianapolis Indianapolis-Carmel, IN

Jacksonville, FL

Rank by Weighted Low-Stress Bike Accessibility	47
Rank by Weighted Medium-Stress Bike Accessibility	45
Rank by Change in Low-Stress Bike Accessibility	32
Rank by Change in Medium-Stress Bike Accessibility	24
Rank by Total Employment	40
Total Jobs	694,925
Average Job Density (per km²)	84
Total Workers	662,664
Average Worker Density (per km ²)	80

Job and worker totals are based on LEHD estimates and may not match other sources.

Biking Job Accessibility by Travel Time Threshold

Jacksonville, FL

Weighted Job Accessibility Ratio, Bike Networks to Open Streets (LTS 4)

Jacksonville, FL

Jacksonville, FL

Kansas City Kansas City, MO-KS

Rank by Weighted Low-Stress Bike Accessibility	21
Rank by Weighted Medium-Stress Bike Accessibility	31
Rank by Change in Low-Stress Bike Accessibility	13
Rank by Change in Medium-Stress Bike Accessibility	10
Rank by Total Employment	26
Total Jobs	1,059,744
Average Job Density (per km²)	52
Total Workers	1,036,878
Average Worker Density (per km ²)	51

Job and worker totals are based on LEHD estimates and may not match other sources.

Biking Job Accessibility by Travel Time Threshold

Kansas City Kansas City, MO-KS

Weighted Job Accessibility Ratio, Bike Networks to Open Streets (LTS 4)

Kansas City

97

Kansas City Kansas City, MO-KS

Las Vegas

Las Vegas-Paradise, NV

Rank by Weighted Low-Stress Bike Accessibility	39
Rank by Weighted Medium-Stress Bike Accessibility	15
Rank by Change in Low-Stress Bike Accessibility	29
Rank by Change in Medium-Stress Bike Accessibility	9
Rank by Total Employment	33
Total Jobs	956,530
Average Job Density (per km²)	47
Total Workers	941,812
Average Worker Density (per km ²)	46

Job and worker totals are based on LEHD estimates and may not match other sources.

Biking Job Accessibility by Travel Time Threshold

Las Vegas

Las Vegas-Paradise, NV

Weighted Job Accessibility Ratio, Bike Networks to Open Streets (LTS 4)

Las Vegas Las Vegas-Paradise, NV

Las Vegas Las Vegas-Paradise, NV

Ratio of Weighted Jobs (Biking, Low-Stress to Open Streets)

Los Angeles

Los Angeles-Long Beach-Santa Ana, CA

5
4
9
3
2
6,249,699
498
5,825,012
464

Job and worker totals are based on LEHD estimates and may not match other sources.

Biking Job Accessibility by Travel Time Threshold

Los Angeles

Los Angeles-Long Beach-Santa Ana, CA

Weighted Job Accessibility Ratio, Bike Networks to Open Streets (LTS 4)

Los Angeles

Los Angeles-Long Beach-Santa Ana, CA

Los Angeles Los Angeles-Long Beach-Santa Ana, CA

Ratio of Weighted Jobs (Biking, Low-Stress to Open Streets)

Louisville/Jefferson County, KY-IN

Rank by Weighted Low-Stress Bike Accessibility	19
Rank by Weighted Medium-Stress Bike Accessibility	34
Rank by Change in Low-Stress Bike Accessibility	37
Rank by Change in Medium-Stress Bike Accessibility	36
Rank by Total Employment	41
Total Jobs	668,246
Average Job Density (per km²)	63
Total Workers	645,505
Average Worker Density (per km ²)	61

Job and worker totals are based on LEHD estimates and may not match other sources.

Biking Job Accessibility by Travel Time Threshold

Louisville/Jefferson County, KY-IN

Weighted Job Accessibility Ratio, Bike Networks to Open Streets (LTS 4)

Louisville/Jefferson County, KY-IN

Louisville/Jefferson County, KY-IN

Ratio of Weighted Jobs (Biking, Low-Stress to Open Streets)

Memphis

Memphis, TN-MS-AR

Rank by Weighted Low-Stress Bike Accessibility	50
Rank by Weighted Medium-Stress Bike Accessibility	50
Rank by Change in Low-Stress Bike Accessibility	21
Rank by Change in Medium-Stress Bike Accessibility	20
Rank by Total Employment	46
Total Jobs	615,157
Average Job Density (per km ²)	52
Total Workers	589,984
Average Worker Density (per km ²)	50

Job and worker totals are based on LEHD estimates and may not match other sources.

Biking Job Accessibility by Travel Time Threshold

Memphis

Memphis, TN-MS-AR

Weighted Job Accessibility Ratio, Bike Networks to Open Streets (LTS 4)

Memphis

Memphis, TN-MS-AR

Memphis Memphis, TN-MS-AR

Ratio of Weighted Jobs (Biking, Low-Stress to Open Streets)

Miami-Fort Lauderdale-Pompano Beach, FL

22
16
22
31
9
2,560,082
195
2,503,411
190

Job and worker totals are based on LEHD estimates and may not match other sources.

Biking Job Accessibility by Travel Time Threshold

Miami-Fort Lauderdale-Pompano Beach, FL

Weighted Job Accessibility Ratio, Bike Networks to Open Streets (LTS 4)

Miami-Fort Lauderdale-Pompano Beach, FL

Miami-Fort Lauderdale-Pompano Beach, FL

Milwaukee-Waukesha-West Allis, WI

Rank by Weighted Low-Stress Bike Accessibility	27
Rank by Weighted Medium-Stress Bike Accessibility	21
Rank by Change in Low-Stress Bike Accessibility	45
Rank by Change in Medium-Stress Bike Accessibility	5
Rank by Total Employment	37
Total Jobs	856,719
Average Job Density (per km²)	227
Total Workers	779,865
Average Worker Density (per km ²)	207

Job and worker totals are based on LEHD estimates and may not match other sources.

Biking Job Accessibility by Travel Time Threshold

Milwaukee-Waukesha-West Allis, WI

Weighted Job Accessibility Ratio, Bike Networks to Open Streets (LTS 4)

Milwaukee-Waukesha-West Allis, WI

Milwaukee-Waukesha-West Allis, WI

Minneapolis

Minneapolis-St. Paul-Bloomington, MN-WI

Rank by Weighted Low-Stress Bike Accessibility	10
Rank by Weighted Medium-Stress Bike Accessibility	10
Rank by Change in Low-Stress Bike Accessibility	18
Rank by Change in Medium-Stress Bike Accessibility	50
Rank by Total Employment	14
Total Jobs	1,901,603
Average Job Density (per km ²)	122
Total Workers	1,847,804
Average Worker Density (per km ²)	118

Job and worker totals are based on LEHD estimates and may not match other sources.

Biking Job Accessibility by Travel Time Threshold

Minneapolis

Minneapolis-St. Paul-Bloomington, MN-WI

Weighted Job Accessibility Ratio, Bike Networks to Open Streets (LTS 4)

Minneapolis

Minneapolis-St. Paul-Bloomington, MN-WI

Minneapolis Minneapolis-St. Paul-Bloomington, MN-WI

Ratio of Weighted Jobs (Biking, Low-Stress to Open Streets)

Nashville-Davidson-Murfreesboro-Franklin, TN

Rank by Weighted Low-Stress Bike Accessibility	41
Rank by Weighted Medium-Stress Bike Accessibility	46
Rank by Change in Low-Stress Bike Accessibility	4
Rank by Change in Medium-Stress Bike Accessibility	4
Rank by Total Employment	36
Total Jobs	922,352
Average Job Density (per km²)	63
Total Workers	843,428
Average Worker Density (per km ²)	57

Job and worker totals are based on LEHD estimates and may not match other sources.

Biking Job Accessibility by Travel Time Threshold

Nashville-Davidson-Murfreesboro-Franklin, TN

100% 75% 50% 33.3% 25% 9.3% 11.1% Lowest Stress Low Stress Medium Stress

Weighted Job Accessibility Ratio, Bike Networks to Open Streets (LTS 4)

Nashville-Davidson--Murfreesboro--Franklin, TN

Nashville-Davidson--Murfreesboro--Franklin, TN

Ratio of Weighted Jobs (Biking, Low-Stress to Open Streets)

New Orleans-Metairie-Kenner, LA

Rank by Weighted Low-Stress Bike Accessibility	24
Rank by Weighted Medium-Stress Bike Accessibility	22
Rank by Change in Low-Stress Bike Accessibility	47
Rank by Change in Medium-Stress Bike Accessibility	45
Rank by Total Employment	49
Total Jobs	534,498
Average Job Density (per km²)	70
Total Workers	505,876
Average Worker Density (per km ²)	66

Job and worker totals are based on LEHD estimates and may not match other sources.

100,000 Low Stress **Medium Stress** 75,000 56,869 48,553 50,000 40,754 30,489 25,000 16,903 4,451 7,159 7,268 6,572 5,865 4,775 **2,318** 10 min 20 min 30 min 40 min 50 min 60 min

Biking Job Accessibility by Travel Time Threshold

New Orleans-Metairie-Kenner, LA

Weighted Job Accessibility Ratio, Bike Networks to Open Streets (LTS 4)

New Orleans-Metairie-Kenner, LA

New Orleans-Metairie-Kenner, LA

New York

New York-Northern New Jersey-Long Island, NY-NJ-PA

Rank by Weighted Low-Stress Bike Accessibility	1
Rank by Weighted Medium-Stress Bike Accessibility	1
Rank by Change in Low-Stress Bike Accessibility	16
Rank by Change in Medium-Stress Bike Accessibility	18
Rank by Total Employment	1
Total Jobs	9,159,786
Average Job Density (per km²)	529
Total Workers	8,946,175
Average Worker Density (per km ²)	517

Job and worker totals are based on LEHD estimates and may not match other sources.

Biking Job Accessibility by Travel Time Threshold

New York

New York-Northern New Jersey-Long Island, NY-NJ-PA

Weighted Job Accessibility Ratio, Bike Networks to Open Streets (LTS 4)

New York

New York-Northern New Jersey-Long Island, NY-NJ-PA

CBSA boundary —
New York

New York-Northern New Jersey-Long Island, NY-NJ-PA

Oklahoma City

Oklahoma City, OK

Rank by Weighted Low-Stress Bike Accessibility	20
Rank by Weighted Medium-Stress Bike Accessibility	44
Rank by Change in Low-Stress Bike Accessibility	40
Rank by Change in Medium-Stress Bike Accessibility	33
Rank by Total Employment	47
Total Jobs	595,050
Average Job Density (per km²)	42
Total Workers	565,695
Average Worker Density (per km ²)	40

Job and worker totals are based on LEHD estimates and may not match other sources.

Biking Job Accessibility by Travel Time Threshold

Oklahoma City

Oklahoma City, OK

Weighted Job Accessibility Ratio, Bike Networks to Open Streets (LTS 4)

Oklahoma City

Oklahoma City, OK

Oklahoma City Oklahoma City, OK

Orlando-Kissimmee-Sanford, FL

Rank by Weighted Low-Stress Bike Accessibility	44
Rank by Weighted Medium-Stress Bike Accessibility	32
Rank by Change in Low-Stress Bike Accessibility	25
Rank by Change in Medium-Stress Bike Accessibility	27
Rank by Total Employment	23
Total Jobs	1,262,313
Average Job Density (per km²)	140
Total Workers	1,135,710
Average Worker Density (per km ²)	126

Job and worker totals are based on LEHD estimates and may not match other sources.

Biking Job Accessibility by Travel Time Threshold

Orlando-Kissimmee-Sanford, FL

100% 75% 50% 37.9% 25% 5.2% 6.9% Lowest Stress Low Stress Medium Stress

Weighted Job Accessibility Ratio, Bike Networks to Open Streets (LTS 4)

Orlando-Kissimmee-Sanford, FL

Orlando-Kissimmee-Sanford, FL

Philadelphia

Philadelphia-Camden-Wilmington, PA-NJ-DE-MD

Rank by Weighted Low-Stress Bike Accessibility	9
Rank by Weighted Medium-Stress Bike Accessibility	12
Rank by Change in Low-Stress Bike Accessibility	27
Rank by Change in Medium-Stress Bike Accessibility	22
Rank by Total Employment	6
Total Jobs	2,853,154
Average Job Density (per km ²)	239
Total Workers	2,862,819
Average Worker Density (per km ²)	240

Job and worker totals are based on LEHD estimates and may not match other sources.

Biking Job Accessibility by Travel Time Threshold

Philadelphia

Philadelphia-Camden-Wilmington, PA-NJ-DE-MD

Weighted Job Accessibility Ratio, Bike Networks to Open Streets (LTS 4)

Philadelphia

Philadelphia-Camden-Wilmington, PA-NJ-DE-MD

Philadelphia Philadelphia-Camden-Wilmington, PA-NJ-DE-MD

Phoenix-Mesa-Glendale, AZ

Rank by Weighted Low-Stress Bike Accessibility	16
Rank by Weighted Medium-Stress Bike Accessibility	17
Rank by Change in Low-Stress Bike Accessibility	20
Rank by Change in Medium-Stress Bike Accessibility	26
Rank by Total Employment	12
Total Jobs	2,007,240
Average Job Density (per km²)	53
Total Workers	1,958,550
Average Worker Density (per km ²)	52

Job and worker totals are based on LEHD estimates and may not match other sources.

Biking Job Accessibility by Travel Time Threshold

Phoenix-Mesa-Glendale, AZ

Weighted Job Accessibility Ratio, Bike Networks to Open Streets (LTS 4)

Phoenix-Mesa-Glendale, AZ

Phoenix-Mesa-Glendale, AZ

Pittsburgh Pittsburgh, PA

Rank by Weighted Low-Stress Bike Accessibility	25
Rank by Weighted Medium-Stress Bike Accessibility	28
Rank by Change in Low-Stress Bike Accessibility	24
Rank by Change in Medium-Stress Bike Accessibility	14
Rank by Total Employment	24
Total Jobs	1,138,726
Average Job Density (per km²)	83
Total Workers	1,105,247
Average Worker Density (per km ²)	81

Job and worker totals are based on LEHD estimates and may not match other sources.

Biking Job Accessibility by Travel Time Threshold

Pittsburgh Pittsburgh, PA

Weighted Job Accessibility Ratio, Bike Networks to Open Streets (LTS 4)

Pittsburgh

Pittsburgh, PA

Portland-Vancouver-Hillsboro, OR-WA

Rank by Weighted Low-Stress Bike Accessibility	3
Rank by Weighted Medium-Stress Bike Accessibility	8
Rank by Change in Low-Stress Bike Accessibility	3
Rank by Change in Medium-Stress Bike Accessibility	28
Rank by Total Employment	22
Total Jobs	1,165,042
Average Job Density (per km ²)	67
Total Workers	1,140,463
Average Worker Density (per km ²)	66

Job and worker totals are based on LEHD estimates and may not match other sources.

Biking Job Accessibility by Travel Time Threshold

Portland-Vancouver-Hillsboro, OR-WA

Weighted Job Accessibility Ratio, Bike Networks to Open Streets (LTS 4)

Portland-Vancouver-Hillsboro, OR-WA

Jobs within 30 minutes (Biking, medium stress) 0 - 1,000 1,000 - 2,500 2,500 - 5,000 5,000 - 7,500 7,500 - 10,000 10,000 - 25,000 25,000 - 50,000 50,000 - 75,000 75,000 - 100,000 100,000 - 250,000 250,000 - 500,000 500,000 - 750,000 750,000 - 1,000,000 1,000,000 - 2,500,000 2,500,000 - 5,000,000 5,000,000 - 7,500,000 7,500,000 - 10,000,000 10,000,000 + State border

CBSA boundary -

Portland-Vancouver-Hillsboro, OR-WA

Providence-New Bedford-Fall River, RI-MA

Rank by Weighted Low-Stress Bike Accessibility	37
Rank by Weighted Medium-Stress Bike Accessibility	43
Rank by Change in Low-Stress Bike Accessibility	19
Rank by Change in Medium-Stress Bike Accessibility	43
Rank by Total Employment	38
Total Jobs	689,902
Average Job Density (per km²)	168
Total Workers	775,615
Average Worker Density (per km ²)	189

Job and worker totals are based on LEHD estimates and may not match other sources.

Biking Job Accessibility by Travel Time Threshold

Providence-New Bedford-Fall River, RI-MA

100% 75% 50% 50% 25% 8.5% 10.3% Lowest Stress Low Stress Medium Stress

Weighted Job Accessibility Ratio, Bike Networks to Open Streets (LTS 4)

Providence-New Bedford-Fall River, RI-MA

CBSA boundary —

Providence-New Bedford-Fall River, RI-MA

Raleigh Raleigh-Cary, NC

Rank by Weighted Low-Stress Bike Accessibility	23
Rank by Weighted Medium-Stress Bike Accessibility	40
Rank by Change in Low-Stress Bike Accessibility	1
Rank by Change in Medium-Stress Bike Accessibility	2
Rank by Total Employment	43
Total Jobs	677,938
Average Job Density (per km²)	124
Total Workers	615,937
Average Worker Density (per km ²)	112

Job and worker totals are based on LEHD estimates and may not match other sources.

Biking Job Accessibility by Travel Time Threshold

Raleigh Raleigh-Cary, NC

Weighted Job Accessibility Ratio, Bike Networks to Open Streets (LTS 4)

Raleigh Raleigh-Cary, NC

Jobs within 30 minutes (Biking, medium stress) 0 - 1,000 1,000 - 2,500 2,500 - 5,000 5,000 - 7,500 7,500 - 10,000 10,000 - 25,000 25,000 - 50,000 50,000 - 75,000 75,000 - 100,000 100,000 - 250,000 250,000 - 500,000 500,000 - 750,000 750,000 - 1,000,000 1,000,000 - 2,500,000 2,500,000 - 5,000,000 5,000,000 - 7,500,000 7,500,000 - 10,000,000 10,000,000 +

> State border -CBSA boundary -

Raleigh Raleigh-Cary, NC

Richmond

Richmond, VA

Rank by Weighted Low-Stress Bike Accessibility	29
Rank by Weighted Medium-Stress Bike Accessibility	33
Rank by Change in Low-Stress Bike Accessibility	46
Rank by Change in Medium-Stress Bike Accessibility	7
Rank by Total Employment	42
Total Jobs	659,862
Average Job Density (per km²)	45
Total Workers	640,682
Average Worker Density (per km ²)	44

Job and worker totals are based on LEHD estimates and may not match other sources.

Biking Job Accessibility by Travel Time Threshold

Richmond

Richmond, VA

Weighted Job Accessibility Ratio, Bike Networks to Open Streets (LTS 4)

Richmond

Richmond, VA

(Biking, medium stress) 0 - 1,000

1,000 - 2,500 2,500 - 5,000 5,000 - 7,500

10,000,000 +

State border
Richmond

Richmond, VA

Ratio of Weighted Jobs (Biking, Low-Stress to Open Streets)

Riverside-San Bernardino-Ontario, CA

Rank by Weighted Low-Stress Bike Accessibility	48
Rank by Weighted Medium-Stress Bike Accessibility	47
Rank by Change in Low-Stress Bike Accessibility	49
Rank by Change in Medium-Stress Bike Accessibility	12
Rank by Total Employment	16
Total Jobs	1,439,654
Average Job Density (per km ²)	20
Total Workers	1,749,931
Average Worker Density (per km ²)	25

Job and worker totals are based on LEHD estimates and may not match other sources.

Biking Job Accessibility by Travel Time Threshold

Riverside-San Bernardino-Ontario, CA

100% 75% 50% 25% 6.0% 6.0% 6.5% Lowest Stress Low Stress Medium Stress

Weighted Job Accessibility Ratio, Bike Networks to Open Streets (LTS 4)

Riverside-San Bernardino-Ontario, CA

Riverside-San Bernardino-Ontario, CA

Ratio of Weighted Jobs (Biking, Low-Stress to Open Streets)

Sacramento-Arden-Arcade-Roseville, CA

Rank by Weighted Low-Stress Bike Accessibility	32
Rank by Weighted Medium-Stress Bike Accessibility	29
Rank by Change in Low-Stress Bike Accessibility	33
Rank by Change in Medium-Stress Bike Accessibility	42
Rank by Total Employment	29
Total Jobs	951,760
Average Job Density (per km²)	72
Total Workers	964,523
Average Worker Density (per km ²)	73
the sector description of the sector of the sector se	

Job and worker totals are based on LEHD estimates and may not match other sources.

Biking Job Accessibility by Travel Time Threshold

Sacramento-Arden-Arcade-Roseville, CA

Weighted Job Accessibility Ratio, Bike Networks to Open Streets (LTS 4)

Sacramento--Arden-Arcade--Roseville, CA

Sacramento--Arden-Arcade--Roseville, CA

Ratio of Weighted Jobs (Biking, Low-Stress to Open Streets)

Salt Lake City

Salt Lake City, UT

Rank by Weighted Low-Stress Bike Accessibility	14
Rank by Weighted Medium-Stress Bike Accessibility	13
Rank by Change in Low-Stress Bike Accessibility	15
Rank by Change in Medium-Stress Bike Accessibility	40
Rank by Total Employment	44
Total Jobs	716,561
Average Job Density (per km²)	29
Total Workers	605,393
Average Worker Density (per km ²)	24

Job and worker totals are based on LEHD estimates and may not match other sources.

Biking Job Accessibility by Travel Time Threshold

Salt Lake City Salt Lake City, UT

Weighted Job Accessibility Ratio, Bike Networks to Open Streets (LTS 4)

Salt Lake City

Salt Lake City, UT

Salt Lake City Salt Lake City, UT

San Antonio-New Braunfels, TX

Rank by Weighted Low-Stress Bike Accessibility	36
Rank by Weighted Medium-Stress Bike Accessibility	42
Rank by Change in Low-Stress Bike Accessibility	31
Rank by Change in Medium-Stress Bike Accessibility	48
Rank by Total Employment	27
Total Jobs	979,988
Average Job Density (per km²)	52
Total Workers	1,019,742
Average Worker Density (per km ²)	54

Job and worker totals are based on LEHD estimates and may not match other sources.

Biking Job Accessibility by Travel Time Threshold

San Antonio-New Braunfels, TX

100% 75% 50% 25% 6.3% 8.6% Lowest Stress Low Stress Medium Stress

Weighted Job Accessibility Ratio, Bike Networks to Open Streets (LTS 4)

San Antonio-New Braunfels, TX

San Antonio-New Braunfels, TX

Ratio of Weighted Jobs (Biking, Low-Stress to Open Streets)

San Diego

San Diego-Carlsbad-San Marcos, CA

Rank by Weighted Low-Stress Bike Accessibility	26
Rank by Weighted Medium-Stress Bike Accessibility	26
Rank by Change in Low-Stress Bike Accessibility	14
Rank by Change in Medium-Stress Bike Accessibility	16
Rank by Total Employment	17
Total Jobs	1,403,191
Average Job Density (per km²)	129
Total Workers	1,419,381
Average Worker Density (per km ²)	130

Job and worker totals are based on LEHD estimates and may not match other sources.

Biking Job Accessibility by Travel Time Threshold

San Diego

San Diego-Carlsbad-San Marcos, CA

Weighted Job Accessibility Ratio, Bike Networks to Open Streets (LTS 4)

San Diego San Diego-Carlsbad-San Marcos, CA

San Diego San Diego-Carlsbad-San Marcos, CA

194

San Francisco-Oakland-Fremont, CA

2
2
8
29
11
2,400,290
375
2,241,034
350

Job and worker totals are based on LEHD estimates and may not match other sources.

Biking Job Accessibility by Travel Time Threshold

San Francisco-Oakland-Fremont, CA

Weighted Job Accessibility Ratio, Bike Networks to Open Streets (LTS 4)

San Francisco-Oakland-Fremont, CA

San Francisco-Oakland-Fremont, CA

Ratio of Weighted Jobs (Biking, Low-Stress to Open Streets)

San Jose-Sunnyvale-Santa Clara, CA

Rank by Weighted Low-Stress Bike Accessibility	12
Rank by Weighted Medium-Stress Bike Accessibility	9
Rank by Change in Low-Stress Bike Accessibility	10
Rank by Change in Medium-Stress Bike Accessibility	30
Rank by Total Employment	31
Total Jobs	1,077,279
Average Job Density (per km²)	155
Total Workers	947,987
Average Worker Density (per km ²)	137

Job and worker totals are based on LEHD estimates and may not match other sources.

Biking Job Accessibility by Travel Time Threshold

San Jose-Sunnyvale-Santa Clara, CA

Weighted Job Accessibility Ratio, Bike Networks to Open Streets (LTS 4)

San Jose-Sunnyvale-Santa Clara, CA

San Jose-Sunnyvale-Santa Clara, CA

Ratio of Weighted Jobs (Biking, Low-Stress to Open Streets)

Seattle

Seattle-Tacoma-Bellevue, WA

Rank by Weighted Low-Stress Bike Accessibility	8
Rank by Weighted Medium-Stress Bike Accessibility	7
Rank by Change in Low-Stress Bike Accessibility	6
Rank by Change in Medium-Stress Bike Accessibility	17
Rank by Total Employment	15
Total Jobs	1,919,635
Average Job Density (per km²)	126
Total Workers	1,798,352
Average Worker Density (per km ²)	118

Job and worker totals are based on LEHD estimates and may not match other sources.

Biking Job Accessibility by Travel Time Threshold

Seattle

Seattle-Tacoma-Bellevue, WA

Weighted Job Accessibility Ratio, Bike Networks to Open Streets (LTS 4)

Seattle

Seattle-Tacoma-Bellevue, WA

Seattle

Seattle-Tacoma-Bellevue, WA

Ratio of Weighted Jobs (Biking, Low-Stress to Open Streets)

St. Louis

St. Louis, MO-IL

Rank by Weighted Low-Stress Bike Accessibility	38
Rank by Weighted Medium-Stress Bike Accessibility	36
Rank by Change in Low-Stress Bike Accessibility	34
Rank by Change in Medium-Stress Bike Accessibility	44
Rank by Total Employment	19
Total Jobs	1,363,165
Average Job Density (per km²)	61
Total Workers	1,344,165
Average Worker Density (per km ²)	60

Job and worker totals are based on LEHD estimates and may not match other sources.

Biking Job Accessibility by Travel Time Threshold

St. Louis

St. Louis, MO-IL

Weighted Job Accessibility Ratio, Bike Networks to Open Streets (LTS 4)

St. Louis

CBSA boundary —
St. Louis

Tampa

Tampa-St. Petersburg-Clearwater, FL

Rank by Weighted Low-Stress Bike Accessibility	43
Nalik by Weighted Low Stress Dike Accessibility	75
Rank by Weighted Medium-Stress Bike Accessibility	23
Rank by Change in Low-Stress Bike Accessibility	28
Rank by Change in Medium-Stress Bike Accessibility	34
Rank by Total Employment	20
Total Jobs	1,307,910
Average Job Density (per km²)	201
Total Workers	1,293,226
Average Worker Density (per km ²)	199

Job and worker totals are based on LEHD estimates and may not match other sources.

1-Year Change in Biking Job Accessibility by Travel Time Threshold

Tampa

Tampa-St. Petersburg-Clearwater, FL

Weighted Job Accessibility Ratio, Bike Networks to Open Streets (LTS 4)

Kilometers of Bikeable Streets by LTS Category (Percent Change from 2018)

Tampa

Tampa-St. Petersburg-Clearwater, FL

Tampa Tampa-St. Petersburg-Clearwater, FL

Virginia Beach

Virginia Beach-Norfolk-Newport News, VA-NC

Rank by Weighted Low-Stress Bike Accessibility	45
Rank by Weighted Medium-Stress Bike Accessibility	48
Rank by Change in Low-Stress Bike Accessibility	41
Rank by Change in Medium-Stress Bike Accessibility	11
Rank by Total Employment	39
Total Jobs	711,408
Average Job Density (per km²)	104
Total Workers	715,637
Average Worker Density (per km ²)	105

Job and worker totals are based on LEHD estimates and may not match other sources.

Biking Job Accessibility by Travel Time Threshold

1-Year Change in Biking Job Accessibility by Travel Time Threshold

Virginia Beach

Virginia Beach-Norfolk-Newport News, VA-NC

Weighted Job Accessibility Ratio, Bike Networks to Open Streets (LTS 4)

Kilometers of Bikeable Streets by LTS Category (Percent Change from 2018)

Virginia Beach

Virginia Beach-Norfolk-Newport News, VA-NC

Virginia Beach Virginia Beach-Norfolk-Newport News, VA-NC

Washington

Washington-Arlington-Alexandria, DC-VA-MD-WV

Rank by Weighted Low-Stress Bike Accessibility	11
Rank by Weighted Medium-Stress Bike Accessibility	11
Rank by Change in Low-Stress Bike Accessibility	48
Rank by Change in Medium-Stress Bike Accessibility	39
Rank by Total Employment	7
Total Jobs	2,830,896
Average Job Density (per km²)	195
Total Workers	2,683,930
Average Worker Density (per km ²)	185

Job and worker totals are based on LEHD estimates and may not match other sources.

Biking Job Accessibility by Travel Time Threshold

1-Year Change in Biking Job Accessibility by Travel Time Threshold

Washington

Washington-Arlington-Alexandria, DC-VA-MD-WV

Weighted Job Accessibility Ratio, Bike Networks to Open Streets (LTS 4)

Kilometers of Bikeable Streets by LTS Category (Percent Change from 2018)

Washington

Washington-Arlington-Alexandria, DC-VA-MD-WV

Washington Washington-Arlington-Alexandria, DC-VA-MD-WV

References

- Cesme, B., Dock, S., Westrom, R., Lee, K., and Barrios, J. A. (2017). Data-Driven Urban Performance Measures: Case Study Application in the District of Columbia. *Transportation Research Record: Journal of the Transportation Research Board*, 2605:45–53.
- Dill, J. and McNeil, N. (2016). Revisiting the Four Types of Cyclists. Transportation Research Record: Journal of the Transportation Research Board, 2587(2387):90–99.
- Figliozzi, M. A. and Blanc, B. P. (2015). Evaluating the Use of Crowdsourcing as a Data Collection Method for Bicycle Performance Measures and Identification of Facility Improvement Needs. Technical report, Oregon Department of Transportation.
- Furth, P. G. (2007). On-Road Bicycle Facilities for Children and Other "Easy Riders": Stress Mechanisms and Design Criteria. *Transportation Research*, page 16p.
- Furth, P. G., Mekuria, M. C., and Nixon, H. (2016). Network Connectivity for Low-Stress Bicycling. Transportation Research Record: Journal of the Transportation Research Board, 2587(2587):41–49.
- Geller, R. (2009). Four Types of Cyclists. Technical report, Portland Office of Transportation, Portland, OR.
- Geller, R. (2011). Build it and they will come: Portland Oregon's experience with modest investments in bicycle transportation. Technical report, City of Portland, OR, Portland, OR.
- Geurs, K. and Van Eck, J. (2001). Accessibility measures: Review and applications. Technical Report 408505 006, National Institute of Public Health and the Environment.
- Handy, S. and Clifton, K. (2001). Evaluating Neighborhood Accessibility: Possibilities and Practicalities. *Journal of Transportation and Statistics*, 4(August):67–78.
- Handy, S. L. and Niemeier, D. A. (1997). Measuring accessibility: An exploration of issues and alternatives. *Environment and planning A*, 29(7):1175–1194.
- Hansen, W. (1959). How accessibility shapes land use. *Journal of the American Institute of Planners*, 25(2):73–76.
- Iacono, M., Krizek, K. J., and El-Geneidy, A. (2010). Measuring non-motorized accessibility: issues, alternatives, and execution. *Journal of Transport Geography*, 18(1):133–140.
- Kent, M. and Karner, A. (2018). Prioritizing low-stress and equitable bicycle networks using neighborhood-based accessibility measures. *International Journal of Sustainable Transportation*, 8318:1–11.
- Krizek, K. J., Iacono, M., El-Geneidy, A. M., Liao, C.-F., and Johns, R. (2009). Application of Accessibility Measures for Non-Auto Travel Modes. page 20.

- Levine, J., Grengs, J., Shen, Q., and Shen, Q. (2012). Does accessibility require density or speed? A comparison of fast versus close in getting where you want to go in U.S. metropolitan regions. *Journal of the American Planning Association*, 78(2):157–172.
- Levinson, D. M. (2013). Access across America. Technical Report CTS 13-20, University of Minnesota Center for Transportation Studies, http://www.cts.umn.edu/Publications/ ResearchReports/pdfdownload.pl?id=2334.
- Lowry, M. B., Furth, P., and Hadden-Loh, T. (2016). Prioritizing new bicycle facilities to improve low-stress network connectivity. *Transportation Research Part A: Policy and Practice*, 86:124–140.
- Mekuria, M. C., Furth, P. G., and Nixon, H. (2012). Loss-Stress Bicycling and Network Connectivity. *Mineta Transportation Institute Report 11-19*, page 68.
- Murphy, B. and Owen, A. (2019). Implementing Low-Stress Bicycle Routing in National Accessibility Evaluation. *Transportation Research Record*.
- People for Bikes (2017). Bike Network Analysis. https://bna.peopleforbikes.org/{#}/ methodology.
- Ramsey, K. and Bell, A. (2014). The smart location database: A nationwide data resource characterizing the built environment and destination accessibility at the neighborhood scalement and destination accessibility at the neighborhood scale. *Cityscape: A Journal of Policy Development and Research*, 16(2).
- Sorton, A. and Walsh, T. (1994). Bicycle Stress Level As a Tool To Evaluate Urban and Suburban Bicycle Compatibility. *Transportation Research Record*, (1438):p. 17–24.
- Tomer, A., Kneebone, E., Puentes, R., and Berube, A. (2011). Missed opportunity: Transit and jobs in metropolitan america. Technical report, Brookings Institution, http://www.brookings.edu/~/media/research/files/reports/2011/5/12%20jobs%20and% 20transit/0512_jobs_transit.pdf.
- U.S. Census Bureau (2017). American Community Survey, 2017 American Community Survey 5-Year Estimates. https://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=ACS_17_5YR_B08006&prodType=table, Visited on 05/28/2019.